Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh vào THPT năm 2022 2023 sở GD ĐT Phú Thọ

Nội dung Đề tham khảo tuyển sinh vào THPT năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề tham khảo tuyển sinh vào THPT năm 2022-2023 sở GD&ĐT Phú Thọ Đề tham khảo tuyển sinh vào THPT năm 2022-2023 sở GD&ĐT Phú Thọ Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 THPT năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Phú Thọ. Đề thi gồm 02 trang với tổng cộng 14 câu hỏi, trong đó có 10 câu trắc nghiệm (chiếm 2.5 điểm) và 04 câu tự luận (chiếm 7.5 điểm). Thời gian làm bài là 120 phút (không tính thời gian phát đề). Đề thi có đáp án và lời giải chi tiết do thầy giáo Vũ Hưng và thầy giáo Nguyễn Quang biên soạn. Trích dẫn một số câu hỏi từ đề tham khảo: 1. Trên một cái thang dài 3.5m, ghi rằng để đảm bảo an toàn khi sử dụng, phải đặt thang với mặt đất thành góc từ 60 đến 70 độ. Gọi x là khoảng cách từ chân thang đến chân tường. Điều kiện để đảm bảo an toàn khi sử dụng thang là gì? 2. Cho parabol y = x^2 và đường thẳng y = mx + 3/2. a) Viết phương trình của đường thẳng đi qua hai điểm A và B. Biết A và B đều thuộc parabol và cách biệt 1 đơn vị về hoành độ. b) Tìm m để đường thẳng cắt parabol tại hai điểm sao cho tổng bình phương khoảng cách từ mỗi điểm tới T(0,0) là nhỏ nhất. 3. Cho đường tròn O và dây BC không đi qua O. Gọi A là điểm thuộc cung lớn BC, M là trung điểm của BC. N là giao điểm của tiếp tuyến tại C và M. K là giao điểm của AB và CM, P là giao điểm của AM và CN, Q là giao điểm của AM và BC. Chứng minh rằng a) Tứ giác ACPK nội tiếp, b) MN // BC, c) CN^2 + KP^2 = CQ^2. Đề tham khảo tuyển sinh vào lớp 10 THPT năm học 2022-2023 sở GD&ĐT Phú Thọ là cơ hội để các em học sinh ôn tập và chuẩn bị cho kì thi quan trọng sắp tới. Hy vọng đề thi sẽ giúp các em nắm vững kiến thức và có kết quả tốt trong kỳ thi. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Đắk Lắk
Đề Toán tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Đắk Lắk được biên soạn vào tổ chức thi vào ngày 08/06/2018 nhằm giúp các trường THPT tại tỉnh Đắk Lắk có cở sở để tuyển chọn các em học sinh phù hợp với tiêu chí của trường để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 chuyên Lê Quý Đôn - Bà Rịa - Vũng Tàu
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh có 120 phút để làm bài, kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2018, đề thi có lời giải chi tiết .