Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa kỳ thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ

Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 - 2022 sở GDĐT Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra vào thứ Ba ngày 22 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Hưng Yên : + Tìm tất cả các giá trị thực của tham số m để hàm số 3 1 2 2 21 1 3 2 x y m x m mx nghịch biến trên khoảng 2021 2022. + Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số 2 1 3 x y x x m có hai đường tiệm cận đứng và khoảng cách giữa hai đường tiệm cận đó bằng 5. + Cho tứ diện ABCD nội tiếp trong hình cầu tâm O bán kính R với tâm O nằm trong tứ diện. Gọi A’ B’ C’ D’ lần lượt là giao điểm của các đường thẳng AO BO CO DO với các mặt phẳng BCD CDA DAB ABC. Chứng minh rằng 4 3 R OA OB OC OD. + Gọi S là tập các số tự nhiên gồm 6 chữ số khác nhau sao cho trong số đó có 3 chữ số chẵn và 3 chữ số lẻ. Chọn ngẫu nhiên một số trong trong tập S, tính xác suất để số được chọn có dạng abcdef thỏa mãn abcdef. + Cho hình chữ nhật ABCD, điểm M thuộc cạnh CD sao cho MC MD 2. Biết AM 2 và 1 cos 10 AMB tính thể tích khối tròn xoay khi cho miền tam giác MAB quay quanh cạnh AB.
Đề thi học sinh giỏi Toán 12 THPT năm 2021 - 2022 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Cho hàm số y f x có bảng biến thiên như hình vẽ sau Khẳng định nào sau đây đúng? A. Đồ thị hàm số không có tiệm cận. B. Hàm số nghịch biến trên các khoảng và C. Đồ thị hàm số có ba đường tiệm cận. D. Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng 0. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD b và cạnh bên SA c vuông góc với mặt phằng (ABCD). Gọi M là một điếm trên cạnh SA sao cho AM x 0 x c. Tìm x để mặt phằng (MBC) chia khối chóp thành hai khối đa diện có thể tích bằng nhau. + Cho 3 số abc theo thứ tự lập thành cấp số nhân với công bội khác 1. Biết cũng theo thứ tự đó chúng lần lượt là số thứ nhất, thứ tư và thứ tám của một cấp số cộng công sai là d. Tính a d.
Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 - 2022 sở GDĐT Cà Mau
Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Cà Mau gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 01 năm 2022.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh gồm 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Tại một ga tàu có 5 khách lên tàu một cách ngẫu nhiên. Biết rằng đoàn tàu có 5 toa tàu và mỗi toa có đủ chỗ cho 5 khách. Tính xác suất để ít nhất 3 toa có khách lên. + Người ta muốn sản xuất một cái thùng đựng dầu có dạng hình trụ với nắp đậy và dung tích là 1m. Biết chi phí sản xuất mặt đáy của thùng là 1000000 đồng trên 1m2 và chi phí sản xuất mặt bên của thùng là 1200000 đồng trên 1m2. Hỏi phải sản xuất thùng với bán kính đáy bằng bao nhiêu để chi phí sản xuất thấp nhất. + Cho hình chóp tứ giác đều S.ABCD có SA = a11. a) Biết cosin của góc hợp bởi hai mặt phẳng (SBC) và (SCD) bằng a. Tính thể tích của khối chóp S.ABCD. b) Biết cạnh đáy AB = a2, gọi X là điểm di động trong mặt phẳng (ABCD), tìm giá trị lớn nhất của biểu thức k = (SB + BX)/SX.