Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Việt Nam - Ba Lan - Hà Nội

Đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Việt Nam – Ba Lan – Hà Nội mã đề 369 gồm có 6 trang, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi học kì 1 Toán 10 là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Việt Nam – Ba Lan – Hà Nội : + Một công ty Taxi có 85 xe chở khách gồm 2 loại: xe chở được 4 khách và xe chở được 7 khách. Nếu dùng tất cả số xe đó, tối đa một lần công ty chờ được 445 khách. Số lượng của mỗi loại xe là? A. 50 xe 4 chỗ; 35 xe 7 chỗ. B. 40 xe 4 chỗ; 45 xe 7 chỗ. C. 35 xe 7 chỗ; 50 xe 4 chỗ. D. 45 xe 4 chỗ; 40 xe 7 chỗ. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống, biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Thời gian quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm) là? + Cho hai điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |MA + MB| = |MA – MB| là? A. Đường tròn tâm I, đường kính AB/2. B. Đường trung trực của đoạn thẳng AI. C. Đường trung trực của đoạn thẳng AB. D. Đường tròn đường kính AB.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường chuyên Ngoại Ngữ - Hà Nội
giới thiệu đến quý thầy, cô và các em học sinh lớp 10 đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội, đề thi được biên soạn hoàn toàn theo hình thức tự luận, gồm 1 trang với 7 bài toán, học sinh có 90 phút để làm bài, kỳ thi được diễn ra ngày 14/12/2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội : + Cho parabol (P): y = x^2 – (m + 1)x + 2m (m là tham số) và đường thẳng d: y = 2x – 2. Tìm tất cả các giá trị của tham số m để đường thẳng d cắt (P) tại hai điểm phân biệt A, B sao cho độ dài đoạn AB bằng 2√5. + Cho tam giác ABC có các cạnh và góc thỏa mãn 2b.cosC + 3c.cos B = a. Chứng minh rằng: 3/ha^2 + 1/hc^2 = 1/hb^2. + Tìm m để phương trình x^3 + mx^2 – 3mx – 27 = 0 có ba nghiệm phân biệt x1, x2, x3 thỏa mãn 1/x1 + 1/x2 + 1/x3 = 10/9.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Phan Đình Phùng - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội mã đề 864 gồm 3 trang với 15 câu hỏi trắc nghiệm khách quan (chiếm 3 điểm) và 4 bài toán tự luận (chiếm 7 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Với mọi số nguyên n, nếu n là số lẻ thì n^2 +1 cũng là số lẻ. B. Với mọi số nguyên n, nếu n là số lẻ thì n^2 cũng là số lẻ. C. Với mọi số nguyên n, nếu n là số lẻ thì 3n – 1 cũng là số lẻ. D. Với mọi số nguyên n, nếu n là số lẻ thì 3n + 1 cũng là số lẻ. [ads] + Cho hàm số y = f(x) có tập xác định là [-3;3] và có đồ thị được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-3;-1) và (1;3). B. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-2;1) và (1;3). C. Hàm số y = f(x) + 2018 nghịch biến trên các khoảng (-2;-1) và (0;1). D. Hàm số y = f(x) + 2018 nghịch biến trên khoảng (-3;-2). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(2;3), B(3;4) và C(3;-1). a/ Chứng minh A, B, C là 3 đỉnh của 1 tam giác. b/ Xác định tọa độ trực tâm H của tam giác ABC. c/ Tìm tọa độ điểm M trên đường phân giác của góc phần tư thứ nhất sao cho biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường M.V Lômônôxốp - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội mã đề 131 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm khách quan gồm 24 câu, chiếm 60% số điểm, phần tự luận gồm 4 câu, chiếm 40% số điểm, đề nhằm giúp nhà trường và giáo viên đánh giá tổng quát lại các kiến thức Toán 10 mà học sinh đã được học trong giai đoạn học kỳ 1 năm học 2018 – 2019, để làm tiền đề cho việc đánh giá và xếp loại học lực. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội : + Một cửa hàng bán đồng hồ. Ngày thứ nhất cửa hàng bán được tổng cộng 50 chiếc đồng hồ gồm cả đồng hồ nam và đồng hồ nữ. Ngày thứ 2 cửa hàng có khuyến mại giảm giá nên số đồng hồ nam bán được tăng 40%, số đồng hồ nữ bán được tăng 20% so với ngày thứ nhất và tổng số đồng hồ bán được ngày thứ hai là 67 chiếc. Hỏi trong ngày thứ nhất cửa hàng bán được số đồng hồ nam, đồng hồ nữ lần lượt là bao nhiêu? [ads] + Cho tam giác ABC có A(-2;1), B(1;-1), C(2;3). a) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b) Tìm tọa độ trực tâm H của tam giác ABC. + Mệnh đề phủ định của mệnh đề “∃n ∈ N, n^2 + 1 chia hết cho 5”. A. “∀n ∈ N, n^2 + 1 không chia hết cho 5”. B. “∀n ∈ N, n^2 + 1 chia hết cho 5”. C. “∃n ∈ N, n^2 + 1 không chia hết cho 5”. D. “∀n ∉ N, n^2 + 1 không chia hết cho 5”.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TP. HCM
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TP. HCM gồm 1 trang được biên soạn theo hình thức tự luận với 5 bài toán, học sinh làm bài trong 90 phút, kỳ thi được diễn ra vào thứ Tư, ngày 12/12/2018 nhằm đánh giá tổng quát các kiến thức môn Toán lớp 10 mà học sinh đã được học trong giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực.