Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường trung bình của tam giác, của hình thang

Nội dung Chuyên đề đường trung bình của tam giác, của hình thang Bản PDF - Nội dung bài viết Chuyên Đề Đường Trung Bình của Tam Giác và Hình Thang Chuyên Đề Đường Trung Bình của Tam Giác và Hình Thang Chuyên đề về đường trung bình của tam giác và hình thang là một tài liệu quan trọng giúp học sinh hiểu rõ về các khái niệm cơ bản và áp dụng chúng vào giải các dạng bài tập phức tạp. Tài liệu này bao gồm 23 trang, tóm tắt lý thuyết về trọng tâm, phân dạng và cung cấp hướng dẫn chi tiết từng bước giải các dạng toán liên quan đến đường trung bình của tam giác và hình thang. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8 chương 1 về Tứ giác. I. Tóm Tắt Lý Thuyết 1. Đường Trung Bình của Tam Giác - Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác. - Định lí 1: Đường thẳng qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai cũng đi qua trung điểm của cạnh thứ ba. - Định lí 2: Đường trung bình của tam giác song song với cạnh thứ ba và có chiều dài bằng nửa cạnh đó. 2. Đường Trung Bình của Hình Thang - Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang. - Định lí 3: Đường thẳng qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì cũng đi qua trung điểm của cạnh bên thứ hai. - Định lí 4: Đường trung bình của hình thang song song với hai đáy và có chiều dài bằng nửa tổng độ dài hai đáy. II. Bài Tập và Các Dạng Toán A. Các Dạng Bài Minh Họa Cơ Bản và Nâng Cao - Dạng 1: Sử dụng định nghĩa và định lí về đường trung bình của tam giác để chứng minh. - Dạng 2: Sử dụng định nghĩa và định lí về đường trung bình của hình thang để chứng minh. - Dạng 3: Sử dụng phối hợp đường trung bình của tam giác và hình thang để chứng minh. - Dạng 4: Tổng hợp. B. Các Dạng Bài Nâng Cao Phát Triển Tư Duy - Đường trung bình của tam giác và hình thang. C. Phiếu Bài Tự Luyện Cơ Bản và Nâng Cao Đồng thời, tài liệu cung cấp phiếu bài tập tự luyện dành cho học sinh từ cơ bản đến nâng cao, giúp họ rèn luyện kỹ năng và phát triển tư duy toán học một cách hiệu quả. Trên cơ sở nội dung trên, việc hiểu rõ về đường trung bình của tam giác và hình thang sẽ giúp học sinh áp dụng linh hoạt vào các bài toán hình học khác nhau, từ những dạng cơ bản đến phức tạp, từ đó nang cao khả năng giải quyet vấn đề và xây dựng nền móng vững chắc cho kiến thức toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết
Tài liệu gồm 183 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án và lời giải chi tiết, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8 chương 3: Phương trình bậc nhất một ẩn. Trích dẫn tài liệu tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết: + Hai cây cọ mọc đối diện nhau ở hai bên bờ sông, cách nhau 50 thước, một cây cao 30 thước, một cây cao 20 thước. trên ngọn của mỗi cây có một con chim đang đậu. Bỗng nhiên cả hai con chim đều nhìn thấy một con cá bơi trên mặt nước giữa hai cây, chúng bổ nhào xuống con cá cùng một lúc với vận tốc như nhau và cùng đến đích một lúc. Tính khoảng cách từ gốc cây cao hơn đến con cá. + Tiểu sử của nhà toán học cố đại nổi tiếng Diophante (Đi – ô – phăng) được tóm tắt trên bia mộ của ông như sau: Hỡi người qua đường! Đây là nơi chôn cất di hài của Diophante, người mà một phần sáu cuộc đời là tuổi niên thiếu huy hoàng; một phần mười hai cuộc đời nữa trôi qua, trên cằm đã mọc râu lún phún. Diophante lấy vợ, một phần bảy cuộc đời trong cảnh vợ chồng hiếm hoi. Năm năm trôi qua, ông sung sướng khi có cậu con trai đầu lòng khôi ngô. Nhưng cậu ta chỉ sống được bằng nửa cuộc đời đẹp đẽ của cha. Rút cục thì với nỗi buồn thương sâu sắc, ông chỉ sống thêm được 4 năm nữa từ sau khi cậu ta lìa đời”. Tính tuổi thọ của Diophante. + Một người dự định đi từ A đến B trong một thời gian quy định với vận tốc 10km/h. Sau khi đi được nửa quãng đường người đó nghỉ 30 phút nên để đến B đúng dự định người đó tăng vận tốc lên 15km/h. Tính quãng đường AB.
Đề cương ôn tập học kì 1 Toán 8 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề cương ôn tập học kì 1 Toán 8 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội.
Chuyên đề phương trình chứa dấu giá trị tuyệt đối
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình chứa dấu giá trị tuyệt đối, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. A. BÀI GIẢNG 1. Nhắc lại về giá trị tuyệt đối. 2. Giải phương trình chứa dấu giá trị tuyệt đối. Trong phạm vi kiến thức Toán 8 chúng ta sẽ chỉ quan tâm tới ba dạng phương trình chứa dấu giá trị tuyệt đối: + Dạng 1: Phương trình: |f(x)| = k với k là hằng số không âm. + Dạng 2: Phương trình |f(x)| = |g(x)|. + Dạng 3: Phương trình: |f(x)| = g(x). B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng toán 1: Phá dấu trị tuyệt đối. + Dạng toán 2: Giải phương trình dạng |f(x)| = k với k là hằng số không âm. + Dạng toán 3: Giải phương trình dạng |f(x)| = |g(x)|. + Dạng toán 4: Giải phương trình dạng |f(x)| = g(x).
Chuyên đề bất phương trình bậc nhất một ẩn
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề bất phương trình bậc nhất một ẩn, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. A. BÀI GIẢNG 1. Định nghĩa. 2. Hai quy tắc biến đổi bất phương trình. + Quy tắc chuyển vế. + Quy tắc nhân với một số. 3. Giải bất phương trình bậc nhất một ẩn. B. BÀI TẬP MINH HỌA + Dạng 1: Điều kiện để một bất phương trình là bất phương trình bậc nhất một ẩn. + Dạng 2: Giải bất phương trình bậc nhất một ẩn.