Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường TH Thực hành Sài Gòn TP HCM

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường TH Thực hành Sài Gòn – TP HCM : + Trong hình vẽ minh họa bên dưới, một vận động viên bóng chuyền đứng cách phía sau vạch quy định 1 m đang tập phát bóng. Độ cao h (m) của quả bóng sau thời gian t giây tính từ lúc bắt đầu phát bóng được cho bởi hàm số 2 h t 4 9. a) Khi nào quả bóng đạt được độ cao cao nhất (làm tròn kết quả đến chữ số thập phân thứ hai)? b) Quả bóng đến lưới lúc t = 0,6 giây. Liệu bóng có qua lưới không? Hãy giải thích, biết chiều cao lưới là 2,43m. + Một vận động viên A tham gia tập luyện chạy cự li 100 mét. Kết quả sau 20 ngày luyện tập được trình bày theo bảng dưới đây: Thời gian chạy 20 ngày của vận động viên A 14 13 12 15 12 15 16 14 12 18 13 16 12 15 16 14 12 30 28 13 a) Tìm số trung bình, tứ phân vị và mốt của mẫu số liệu trên. b) Huấn luyện viên muốn gửi bài báo cáo thành tích cho ban huấn luyện. Trong các tham số trên, huấn luyện viên chọn tham số nào để phản ánh đúng khả năng của vận động viên A? Giải thích. + Cho hình thoi ABCD có O là giao điểm của hai đường chéo, AB a 2 và 60o BAD. Trên đoạn thẳng AB lấy điểm M sao cho MB MA 2. Gọi N là trung điểm của đoạn thẳng AO. a) Tính tích vô hướng của hai vectơ AM và AN. b) Gọi I là trung điểm của đoạn thẳng MN. Phân tích các vectơ AI CI theo AB và AC. c) Đường thẳng MN cắt BC tại P. Biết PB kPC tìm k.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường Phước Vĩnh - Bình Dương
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường Phước Vĩnh – Bình Dương mã đề 392 gồm 25 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, học sinh làm bài trong 90 phút, đề nhằm giúp giáo viên bộ môn và nhà trường đánh giá toàn diện lại các kiến thức Toán 10 mà học sinh đã được học trong thời gian qua. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường Phước Vĩnh – Bình Dương : + Trong hệ trục tọa độ Oxy, cho tam giác ABC với A(-2;1), B(4;1), C(-2;5). a/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b/ Chứng minh AB vuông góc AC. Tính diện tích tam giác ABC. [ads] + Câu nào sau đây không là mệnh đề? A. Tam giác đều là tam giác có ba cạnh bằng nhau. B. 3 < 1. C. Bạn học giỏi quá!. D. 4 – 5 = 1. + Trong hệ trục tọa độ Oxy. Cho tam giác ABC có A(3;5), B(1;2), C(5;2). Trọng tâm của tam giác ABC là?
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường chuyên Ngoại Ngữ - Hà Nội
giới thiệu đến quý thầy, cô và các em học sinh lớp 10 đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội, đề thi được biên soạn hoàn toàn theo hình thức tự luận, gồm 1 trang với 7 bài toán, học sinh có 90 phút để làm bài, kỳ thi được diễn ra ngày 14/12/2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội : + Cho parabol (P): y = x^2 – (m + 1)x + 2m (m là tham số) và đường thẳng d: y = 2x – 2. Tìm tất cả các giá trị của tham số m để đường thẳng d cắt (P) tại hai điểm phân biệt A, B sao cho độ dài đoạn AB bằng 2√5. + Cho tam giác ABC có các cạnh và góc thỏa mãn 2b.cosC + 3c.cos B = a. Chứng minh rằng: 3/ha^2 + 1/hc^2 = 1/hb^2. + Tìm m để phương trình x^3 + mx^2 – 3mx – 27 = 0 có ba nghiệm phân biệt x1, x2, x3 thỏa mãn 1/x1 + 1/x2 + 1/x3 = 10/9.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Phan Đình Phùng - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội mã đề 864 gồm 3 trang với 15 câu hỏi trắc nghiệm khách quan (chiếm 3 điểm) và 4 bài toán tự luận (chiếm 7 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Với mọi số nguyên n, nếu n là số lẻ thì n^2 +1 cũng là số lẻ. B. Với mọi số nguyên n, nếu n là số lẻ thì n^2 cũng là số lẻ. C. Với mọi số nguyên n, nếu n là số lẻ thì 3n – 1 cũng là số lẻ. D. Với mọi số nguyên n, nếu n là số lẻ thì 3n + 1 cũng là số lẻ. [ads] + Cho hàm số y = f(x) có tập xác định là [-3;3] và có đồ thị được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-3;-1) và (1;3). B. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-2;1) và (1;3). C. Hàm số y = f(x) + 2018 nghịch biến trên các khoảng (-2;-1) và (0;1). D. Hàm số y = f(x) + 2018 nghịch biến trên khoảng (-3;-2). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(2;3), B(3;4) và C(3;-1). a/ Chứng minh A, B, C là 3 đỉnh của 1 tam giác. b/ Xác định tọa độ trực tâm H của tam giác ABC. c/ Tìm tọa độ điểm M trên đường phân giác của góc phần tư thứ nhất sao cho biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường M.V Lômônôxốp - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội mã đề 131 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm khách quan gồm 24 câu, chiếm 60% số điểm, phần tự luận gồm 4 câu, chiếm 40% số điểm, đề nhằm giúp nhà trường và giáo viên đánh giá tổng quát lại các kiến thức Toán 10 mà học sinh đã được học trong giai đoạn học kỳ 1 năm học 2018 – 2019, để làm tiền đề cho việc đánh giá và xếp loại học lực. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội : + Một cửa hàng bán đồng hồ. Ngày thứ nhất cửa hàng bán được tổng cộng 50 chiếc đồng hồ gồm cả đồng hồ nam và đồng hồ nữ. Ngày thứ 2 cửa hàng có khuyến mại giảm giá nên số đồng hồ nam bán được tăng 40%, số đồng hồ nữ bán được tăng 20% so với ngày thứ nhất và tổng số đồng hồ bán được ngày thứ hai là 67 chiếc. Hỏi trong ngày thứ nhất cửa hàng bán được số đồng hồ nam, đồng hồ nữ lần lượt là bao nhiêu? [ads] + Cho tam giác ABC có A(-2;1), B(1;-1), C(2;3). a) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b) Tìm tọa độ trực tâm H của tam giác ABC. + Mệnh đề phủ định của mệnh đề “∃n ∈ N, n^2 + 1 chia hết cho 5”. A. “∀n ∈ N, n^2 + 1 không chia hết cho 5”. B. “∀n ∈ N, n^2 + 1 chia hết cho 5”. C. “∃n ∈ N, n^2 + 1 không chia hết cho 5”. D. “∀n ∉ N, n^2 + 1 không chia hết cho 5”.