Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 trường THPT Lương Thế Vinh Quảng Ngãi

Nội dung Đề học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 trường THPT Lương Thế Vinh Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra cuối học kì 2 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Lương Thế Vinh, tỉnh Quảng Ngãi; đề thi gồm 35 câu trắc nghiệm (07 điểm) và 04 câu tự luận (03 điểm), thời gian làm bài 90 phút. Trích dẫn Đề học kì 2 Toán lớp 12 năm 2022 – 2023 trường THPT Lương Thế Vinh – Quảng Ngãi : + Ông Hùng xây dựng một sân bóng đá mini hình chữ nhật có chiều rộng 30m và chiều dài 50 m. Để giảm bớt kinh phí cho việc trồng cỏ nhân tạo, ông Hùng chia sân bóng ra làm hai phần (tô màu và không tô màu) như hình vẽ. Phần tô màu gồm hai miền diện tích bằng nhau và đường cong AIB là một parabol có đỉnh I. Phần tô màu được trồng cỏ nhân tạo với giá 120 nghìn đồng/m2 và phần còn lại được trồng cỏ nhân tạo với giá 80 nghìn đồng/m2. Hỏi ông Hùng phải trả bao nhiêu tiền để trồng cỏ nhân tạo cho sân bóng? + Trong không gian với hệ tọa độ Oxyz, cho A(1; 3; 2); B(2; 2; −1) và mặt phẳng (P): 2x − y + z + 4 = 0. Viết phương trình mặt phẳng (Q) qua hai điểm A, B và vuông góc với mặt phẳng (P). + Cho số phức z thoả mãn |z − 3 − 4i| = √5. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 2|2 − |z − i|2. Tính môđun của số phức w = M + mi. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Trong không gian Oxyz, cho mặt phẳng x y z 3 4 0. Điểm nào dưới đây không thuộc mặt phẳng? + Cho số phức z thỏa mãn. Tìm điểm biểu diễn của số phức w trên mặt phẳng tọa độ. + Gọi (H) là hình phẳng giới hạn bởi các đường: 3 2 y x x 3 và y 0. Tính thể tích V của vật thể tròn xoay tạo thành khi quay (H) xung quanh trục Ox?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Cho elip E có độ dài trục lớn 1 2 A A 10, trục nhỏ 1 2 B B 8 và hai tiêu điểm F1, F2. Diện tích S của hình phẳng giới hạn bởi E và hai đường thẳng đi qua các tiêu điểm, vuông góc với trục lớn (tham khảo hình vẽ) nằm trong khoảng nào dưới đây? + Tính thể tích V của vật thể được giới hạn bởi hai mặt phẳng x a và x b biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x a x b thì được thiết diện có diện tích S x. Khẳng định nào sau đây đúng? + Cho các số phức z, w thỏa mãn z 1 và w i z. Biết rằng tập hợp các điểm biểu diễn số phức w trong mặt phẳng Oxy là một đường tròn. Tính bán kính r của đường tròn đó.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình phẳng (H) được giới hạn bởi parabol, trục Ox và các đường thẳng x x 1 3. Diện tích của hình phẳng (H) là? + Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm M(3;-5;0) và song song với trục Oy là? + Trong không gian Oxyz, cho ba điểm A(1;-1;1), B(0;1;2), C(1;0;3). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.