Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL tháng 10 Toán 12 năm 2019 - 2020 trường M.V Lômônôxốp - Hà Nội

Nhằm kiểm tra định kỳ chất lượng học tập môn Toán của học sinh khối 12 và ôn tập từng bước chuẩn bị cho kỳ thi THPT Quốc gia 2020 môn Toán, trường THCS và THPT M.V Lômônôxốp – Hà Nội tổ chức kỳ thi khảo sát chất lượng tháng 10 môn Toán 12 năm học 2019 – 2020. Đề KSCL tháng 10 Toán 12 năm học 2019 – 2020 trường THCS và THPT M.V Lômônôxốp – Hà Nội mã đề 247 gồm có 08 trang với 50 câu trắc nghiệm, mỗi câu có 04 phương án chọn lựa, thời gian làm bài 90 phút, để hoàn thành tốt bài thi, học sinh cần ôn tập lại các nội dung Toán 12 đã học và một số nội dung Toán 11 trọng tâm, đề thi có đáp án mã đề 247, 249, 251, 253, 248, 250, 252, 254. Trích dẫn đề KSCL tháng 10 Toán 12 năm 2019 – 2020 trường M.V Lômônôxốp – Hà Nội : + Cho hình chóp đều S.ABCD. Khẳng định nào sau đây sai? A. Đáy là hình vuông và chân đường cao của hình chóp trùng với tâm đáy. B. Tồn tại điểm I cách đều năm đỉnh của hình chóp. C. Hai mặt (SAC) và (SBD) vuông góc nhau. D. Tất cả các cạnh của hình chóp đều bằng nhau. [ads] + Cho các hàm số y = f(x), y = f(f(x)), y = f(4 – 2x) có đồ thị lần lượt là (C1), (C2), (C3). Đường thẳng x = 1 cắt (C1), (C2), (C3) lần lượt tại M, N, P. Biết tiếp tuyến của (C1) tại M có phương trình là y = 3x – 1, tiếp tuyến của (C2) tại N có phương trình là y = x + 1. Phương trình tiếp tuyến của (C3) tại P là? + Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3 … và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích S4, S5 … S100 (tham khảo hình bên). Biết tổng S1 + S2 + … + S100 = (2^100 – 1)/2^93. Tính a?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán thi TN THPT 2022 lần 3 trường chuyên Lam Sơn - Thanh Hóa
Thứ Bảy ngày 11 tháng 06 năm 2022, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn thi tốt nghiệp Trung học Phổ thông năm học 2021 – 2022 lần thứ ba. Đề KSCL Toán thi TN THPT 2022 lần 3 trường chuyên Lam Sơn – Thanh Hóa mã đề 160 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án Mã đề 142 Mã đề 149 Mã đề 160 Mã đề 176 Mã đề 183 Mã đề 194 Mã đề 210 Mã đề 217. Trích dẫn đề KSCL Toán thi TN THPT 2022 lần 3 trường chuyên Lam Sơn – Thanh Hóa : + Cho a b là các số nguyên dương nhỏ hơn 2022. Gọi S là tập các giá trị của b thỏa mãn: Với mỗi giá trị của b luôn có ít nhất 100 giá trị không nhỏ hơn 3 của a thỏa mãn 2 2 log 4 1 a b b a b a b đồng thời các tập hợp có b phần tử có số tập con lớn hơn 1024. Số phần tử của tập S là? + Trong không gian Oxyz cho tam giác ABC có A B C 3 1 4 2 0 0 4 0 0. Trên các tia Bm Cn cùng phía và vuông góc với mặt phẳng ABC lần lượt lấy các điểm M N thỏa mãn BM CN. Gọi I là trung điểm BC và E là điểm đối xứng của I qua trực tâm tam giác AMN. Biết khi M N di động thì E nằm trên một đường tròn cố định. Tính bán kính đường tròn đó. + Cho hàm số bậc ba y f x có đồ thị C như hình vẽ. Biết đồ thị hàm số cắt trục hoành tại ba điểm có hoành độ 1 2 3 x x x theo thứ tự lập thành cấp số cộng và 3 1 x x 2 3. Gọi diện tích hình phẳng giới hạn bởi C và trục Ox là S diện tích 1 S của hình phẳng giới hạn bởi các đường 1 y f x y f x x x 2 2 và 3 x x bằng?
Đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 2 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm 2022 lần 2 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 109. Trích dẫn đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 2 trường THPT chuyên Vĩnh Phúc : + Trong không gian Oxyz cho mặt cầu 2 2 2 S x y z x y z 2 4 6 13 0 và đường thẳng 1 4 1 2 2 1 x y z d. Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA MB MC đến mặt cầu S (A B C là các tiếp điểm) thỏa mãn AMB 60 BMC 90 CMA 120 có dạng M a b c với c 0. Tính tổng a b c. + Cho hình trụ có đáy là hai đường tròn tâm O và O đường kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A trên đường tròn tâm O lấy điểm B. Đặt là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng? + Cho y f x là hàm đa thức bậc 4 và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 12 12 để hàm số g x f x m 2 1 có 5 điểm cực trị?
Đề KSCL lần 3 Toán 12 năm 2021 - 2022 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2021 – 2022 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL lần 3 Toán 12 năm 2021 – 2022 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trong không gian với hệ trục tọa độ Oxyz gọi P là mặt phẳng đi qua điểm H 1 2 5 và cắt các trục Ox Oy Oz lần lượt tại A B C (khác gốc tọa độ O) sao cho H là trực tâm tam giác ABC. Biết mặt phẳng P có phương trình ax by cz 30 0. Tính tổng T a b c. + Trong không gian Oxyz, cho điểm A 1 1 3 và 2 đường thẳng 1 4 2 1 1 4 2 x y z d 2 2 1 1 1 1 1 x y z d. Đường thẳng d đi qua A cắt 2 d và vuông góc với 1 d. Mặt phẳng P đi qua gốc tọa độ và chứa đường thẳng d. Biết mặt phẳng P có một véc tơ pháp tuyến là n a b 1. Biểu thức a b 1 bằng? + Cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ đã cho bằng?
Đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm 2022 lần 1 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc : + Gọi 1z 2 z là hai số phức thỏa mãn đồng thời hai điều kiện 2 5 1 5 z i z mi z m 2 với m là số thực tùy ý. Gọi A B lần lượt là điểm biểu diễn hình học của 1z 2 z. Gọi S là tập các giá trị của m để diện tích tam giác ABI là lớn nhất với I 1 1. Tổng bình phương các phần tử của S bằng? + Trong không gian Oxyz cho hai điểm A B 1 2 3 3 4 5 và mặt phẳng Px y z 2 3 14 0. Gọi là một đường thẳng thay đổi nằm trong mặt phẳng P. Gọi H K lần lượt là hình chiếu vuông góc của A B trên. Biết rằng khi AH BK thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của đường thẳng d là? + Cho đường thẳng y x a (a là tham số thực dương) và đồ thị hàm số y x. Gọi 1 2 S S lần lượt là diện tích hai hình phẳng được gạch chéo trong hình vẽ bên. Khi 1 2 5 3 S S thì a thuộc khoảng nào dưới đây?