Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa của một số hữu tỉ

Nội dung Chuyên đề lũy thừa của một số hữu tỉ Bản PDF - Nội dung bài viết Chuyên đề lũy thừa của một số hữu tỉ Chuyên đề lũy thừa của một số hữu tỉ Tài liệu này bao gồm 14 trang, cung cấp kiến thức lý thuyết, các dạng toán và bài tập về chuyên đề lũy thừa của một số hữu tỉ. Tài liệu có đầy đủ đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, phần Đại số chương 1: Số hữu tỉ và số thực. Mục tiêu của tài liệu: Kiến thức: Nắm được định nghĩa về lũy thừa với số mũ tự nhiên. Hiểu và áp dụng đúng các quy tắc phép tính lũy thừa. Mở rộng kiến thức về lũy thừa với số mũ nguyên âm và những tính chất liên quan. Kỹ năng: Tính toán được lũy thừa với các số hữu tỉ và số mũ tự nhiên cụ thể. Sử dụng công thức phép tính lũy thừa để thực hiện phép tính và rút gọn biểu thức. Áp dụng kiến thức về lũy thừa để đưa các lũy thừa về cùng cơ số hoặc cùng số mũ, so sánh và giải các bài toán có liên quan. Sử dụng các tính chất của lũy thừa để tìm số mũ hoặc cơ số của một lũy thừa. Nội dung tài liệu: I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP: Dạng 1: Tính lũy thừa của một số hữu tỉ. Dạng 2: Viết số dưới dạng lũy thừa của một số hữu tỉ. Dạng 3: Thực hiện các phép tính lũy thừa. Dạng 4: So sánh các lũy thừa. Dạng 5: Tìm số mũ, cơ số của lũy thừa. Bài Toán lớp 1: Tìm số mũ của lũy thừa. Bài Toán lớp 2: Tìm cơ số của lũy thừa. Thông qua tài liệu này, học sinh sẽ hiểu rõ hơn về lũy thừa, các quy tắc phép tính liên quan và biết cách áp dụng kiến thức vào việc giải các bài tập thực hành. Đồng thời, giúp nâng cao kỹ năng tính toán và logic của học sinh trong quá trình học Toán. Học sinh lớp 7 hãy cùng tham gia và thực hành để nắm vững chuyên đề này nhé!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề các trường hợp bằng nhau của tam giác vuông Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Xét hai tam giác vuông. + Kiểm tra các điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Chọn hai tam giác vuông có cạnh (góc) là đoạn thẳng (góc) cần tính hoặc chứng minh bằng nhau. + Tìm thêm hai điều kiện bằng nhau, trong đó có một điều kiện về cạnh, để kết luận hai tam giác bằng nhau. + Suy ra các cạnh (góc) tương ứng bằng nhau và kết luận. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác Toán 7
Tài liệu gồm 36 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác bằng nhau. + Xét hai tam giác. + Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh một tính chất khác. + Chọn hai tam giác có cạnh (góc) là hai đoạn thẳng (góc) cần chứng minh bằng nhau. + Chứng minh hai tam giác ấy bằng nhau theo một trong hai trường hợp cạnh – góc – cạnh, góc – cạnh – góc rồi suy ra hai cạnh (góc) tương ứng bằng nhau. Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết hợp với các tính chất đã học về tia phân giác, đường thẳng song song, đường trung trực, tổng ba góc trong một tam giác, … để chứng minh một tính chất khác. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài tập lí thuyết: Viết kí hiệu về sự bằng nhau của hai tam giác, từ kí hiệu bằng nhau của hai tam giác suy ra các cạnh – góc bằng nhau. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc bằng nhau đúng thứ tự tương ứng. + Ngược lại, khi viết kí hiệu tam giác bằng nhau lưu ý kiểm tra lại xem các góc hay cạnh tương ứng đã bằng nhau thỏa mãn yêu cầu đề bài chưa. Dạng 2 . Biết hai tam giác bằng nhau và một số điều kiện, tính số đo góc, độ dài cạnh của tam giác. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc tương ứng bằng nhau. + Lưu ý các bài toán: tổng – hiệu, tổng – tỉ, hiệu – tỉ. + Sử dụng định lí tổng ba góc trong một tam giác. Dạng 3 . Chứng minh hai tam giác bằng nhau theo trường hợp bằng nhau thứ nhất. Từ đó chứng minh các bài toán liên quan: hai đoạn thẳng bằng nhau, hai góc bằng nhau, hai đường thẳng song song – vuông góc, đường phân giác, ba điểm thẳng hàng. + Chỉ ra các tam giác có ba cạnh bằng nhau để suy ra tam giác bằng nhau. + Từ tam giác bằng nhau suy ra các cặp cạnh tương ứng bằng nhau, cặp góc tương ứng bằng nhau. + Nắm vững các khái niệm: tia phân giác của góc, đường cao của tam giác, đường trung trực của đoạn thẳng, hai đường thẳng song song, hai đường thẳng vuông góc; nắm vững định lí tổng ba góc trong một tam giác, tiên đề Ơ clit để giải các bài toán chứng minh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tổng các góc trong một tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tổng các góc trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tính số đo góc của một tam giác. – Lập các đẳng thức thể hiện: + Tổng ba góc của tam giác bằng 180 độ. + Trong tam giác vuông, hai góc nhọn phụ nhau. + Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó. – Sau đó tính số đo góc phải tìm. Dạng 2. Các dạng bài toán chứng minh. – Sử dụng các tính chất trong phần kiến thức cần nhớ. – Lưu ý thêm về các tính chất đã học về quan hệ song song, vuông góc, tia phân giác góc. PHẦN III . BÀI TẬP TỰ LUYỆN.