Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2021 2022 trường THPT chuyên Bến Tre

Nội dung Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2021 2022 trường THPT chuyên Bến Tre Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2021 2022 trường THPT chuyên Bến Tre Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2021 2022 trường THPT chuyên Bến Tre Xin chào quý thầy cô và các em học sinh lớp 10! Hôm nay, Sytu xin giới thiệu đến quý vị đề chọn đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2021-2022 tại trường THPT chuyên Bến Tre, tỉnh Bến Tre. Đề chọn đội tuyển HSG môn Toán lớp 10 năm 2021-2022 tại trường THPT chuyên Bến Tre bao gồm các câu hỏi sau: + Trong một hình vuông có độ dài cạnh bằng 4, chúng ta cần xác định 33 điểm sao cho không có ba điểm nào thẳng hàng. Sau đó, vẽ các đường tròn bán kính đều bằng 2 và có tâm tại các điểm đã cho. Đề bài yêu cầu kiểm tra xem ba điểm trong số các điểm đã cho có cùng thuộc vào phần chung của ba hình tròn có tâm không. + Đề cho một dãy số (un) được xác định bởi một công thức nào đó. Yêu cầu của câu hỏi là tìm công thức của số hạng tổng quát un theo n. + Đề bài còn liên quan đến tam giác ABC nhọn, không cân và có các đường cao AH, BM, CN. Gọi D là chân đường phân giác trong của góc A và E, F lần lượt là hình chiếu của D lên các cạnh AB, AC. Cần chứng minh rằng các đường thẳng MN, EF, BC đồng quy. Hy vọng đề thi sẽ giúp các em học sinh lớp 10 rèn luyện kiến thức, nâng cao kỹ năng giải toán và chuẩn bị tốt cho kì thi chọn đội tuyển HSG môn Toán. Chúc quý thầy cô và các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 10 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với số nguyên dương n 2, xét bảng vuông gồm có 2 1 2 1 n n ô vuông, người ta viết vào mỗi ô chỉ một trong 3 số 1, 0 hoặc 1 sao cho trong mỗi bảng con 2 2 luôn tìm được 3 ô có tổng bằng 0. Gọi n S là giá trị lớn nhất của tổng tất cả các số trong bảng. Chứng minh? + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn O. Tia AO cắt đoạn thẳng BC tại L. Gọi A là điểm đối xứng với A qua đường thẳng BC. Giả sử tiếp tuyến qua A của đường tròn ngoại tiếp tam giác ABC cắt các tia AB AC lần lượt tại các điểm D E. a. Chứng minh đường tròn ngoại tiếp các tam giác A B D, ACE, AAL cùng đi qua một điểm khác A. b. Gọi J là tâm đường tròn ngoại tiếp tam giác ADE. Chứng minh đường tròn ngoại tiếp tam giác JDE tiếp xúc với. + Cho a b c là độ dài các cạnh của một tam giác có chu vi bằng 2. Chứng minh?
Đề Olympic tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề Olympic Toán 10 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 10 năm học 2020 – 2021. Đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Tìm tham số b và c sao cho hàm số có đồ thị là một đường parabol  với đỉnh là I(2;5). + Lập bảng biến thiên của hàm số. Từ đó hãy tìm tham số m sao cho phương trình có nghiệm duy nhất. + Cho tam giác ABC. Tam giác ABC có hai đường trung tuyến BM và CN vuông góc với nhau tại trọng tâm G. Tính theo a diện tích tam giác ABC.
Đề học sinh giỏi Toán 10 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề học sinh giỏi Toán 10 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Trong mặt phẳng với tọa độ Oxy, cho tam giác ABC, BE và CD là các đường cao của tam giác.Giả sử D(2;0), E(1;3) và đường thẳng BC có phương trình: y = 1 – 2x. a/ Tìm tọa độ của M biết M là trung điểm của BC. b/ Tìm tọa độ của điểm B biết B có hoành độ dương. + Cho các số thực x, y, z thỏa mãn x + y + z = 0, x2 + y2 + z2 = 8. Tìm giá trị nhỏ nhất của biểu thức S = |x| + |y| + |z|. + Cho lục giác ABCDEF có AB vuông góc với EF và hai tam giác ACE và BDF có cùng trọng tâm. Chứng minh rằng AB2 + EF2 = CD2.