Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập chuyên đề tích phân và số phức vận dụng cao

Kỳ thi THPT Quốc gia từ năm 2016 – 2017, bài thi môn Toán chuyển từ thi tự luận sang hình thức thi trắc nghiệm nên trong cách dạy, cách kiểm tra đánh giá, cách ra đề cũng thay đổi. Sự thay đổi đó nằm trong toàn bộ chương trình môn Toán nói chung và trong phần tích phân nói riêng. Trong phần tích phân nếu cho bài như phần tự luận thì học sinh có thể dùng máy tính cầm tay để cho kết quả dễ dàng. Do đó việc ra đề theo hình thức trắc nghiệm và hạn chế việc dùng máy tính cầm tay được ưu tiên trong toán THPT. Trong đề thi THPT Quốc gia môn Toán năm 2017, ta thấy xuất hiện một bài toán lạ về tích phân. Nó cũng rất thú vị khi giúp ta đi sâu tìm thêm về ứng dụng của tích phân. Trong tài liệu này xin giới thiệu với các bạn các bài toán liên quan đến so sánh các giá trị của hàm số y = f(x) khi biết đồ thị của hàm số y = f'(x). Phương pháp chung cho các bài toán như thế này, một cách tự nhiên ta thầy rằng để so sánh được các giá trị của hàm số thì sử dụng bảng biến thiên là đơn giản nhất, vì khi đó ta nhìn thấy được hàm số đồng biến hay nghịch biến. Ngoài ra ta kết hợp thêm phần diện tích của hình phẳng được giới hạn bởi các đường liên quan. Với mục đích giúp các em học sinh trung học phổ thông nói chung, các bạn học sinh đam mê Toán nói riêng có thêm tài liệu để tham khảo và chuẩn bị đầy đủ kiến thức cho kỳ thi THPT Quốc gia, nhóm giáo viên Toán học Bắc Trung Nam sưu tầm và biên soạn cuốn sách chuyên đề tích phân và số phức vận dụng cao, tài liệu này gồm 10 chuyên đề: [ads] Chuyên đề 1. Các bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước. Chuyên đề 2. Các bài toán ước lượng giá trị của một hàm số khi cho trước các tích phân liên quan. Chuyên đề 3. Ứng dụng tích phân trong giải các bài toán liên quan đến so sánh giá trị của hàm số. Chuyên đề 4. Ứng dụng tích phân trong bài toán tính diện tích hình phẳng với dữ kiện toán thực tế. Chuyên đề 5. Ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế. Chuyên đề 6. Ứng dụng nguyên hàm, tích phân trong các bài toán thực tiễn khác. Chuyên đề 7. Bất đẳng thức tích phân và một số bài toán liên quan. Chuyên đề 8. Sử dụng phương pháp hình học giải bài toán số phức. Chuyên đề 9. Phương pháp đại số, lượng giác trong giải bài toán max – min số phức. Chuyên đề 10. Các bài toán số phức khác ở mức độ vận dụng cao.

Nguồn: toanmath.com

Đọc Sách

Toàn tập nguyên hàm, tích phân vận dụng cao (chuyên đề tính toán)
Tài liệu gồm 114 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề nguyên hàm và tích phân vận dụng cao (chuyên đề tính toán) lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm, tích phân và ứng dụng. A: TỪNG PHẦN, VI PHÂN (A1 ĐẾN A8). B: NGUYÊN HÀM NÂNG CAO (B1 ĐẾN B8). C: THAM SỐ, GIÁ TRỊ TUYỆT ĐỐI, MIN MAX, HÀM SỐ CHẴN LẺ (C1 ĐẾN C8). D: HÀM ẨN TỔNG HỢP (D1 ĐẾN D8). E: TÍCH PHÂN HAI VẾ, ĐỔI BIẾN, XÁC ĐỊNH HÀM (E1 ĐẾN E8). F: HẰNG ĐẲNG THỨC, BẤT ĐẲNG THỨC TÍCH PHÂN (F1 ĐẾN F8). G: TÍCH PHÂN THUẦN NÂNG CAO (G1 ĐẾN G8).
Giải bài toán nguyên hàm - tích phân dưới sự hỗ trợ của máy tính Casio FX-580 VNX
Tích phân là một trong những chuyên đề hay, có nhiều ứng dụng trong tính toán thực tế. Ngoài ra, tích phân cũng là một chuyên đề thường xuyên xuất hiện trong các đề thi THPT Quốc Gia từ những câu hỏi ở mức độ nhận biết đến các bài vận dụng. Với hình thức thi Trắc nghiệm thì việc sử dụng máy tính thành thạo và hiệu quả giúp học sinh hạn chế tính nhầm, tránh trường hợp sai số đáng tiếc (cấu trúc đề bài có các đáp án nhiễu). Mặt khác tối ưu thời gian làm bài. Trong bài viết này, Diễn đàn máy tính cầm tay sẽ tổng hợp một số hướng giải quyết các dạng toán tiêu biểu của chuyên đề Tích phân trong các đề thi dưới sự hỗ trợ của máy tính Casio fx-580 VNX. Phụ lục: 1. TÌM NGUYÊN HÀM F(x) CỦA HÀM SỐ f(x) CHO TRƯỚC 1. 2. TÌM NGUYÊN HÀM F(x) CỦA HÀM SỐ f(x) CHO TRƯỚC THỎA ĐIỀU KIỆN F(x0) = M 5. 3. XÁC ĐỊNH CÁC ẨN SỐ A, B, C TRONG BÀI TOÁN TÍCH PHÂN 6. 4. ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH MẶT PHẲNG 10. 5. ỨNG DỤNG TÍCH PHÂN ĐỂ TÍNH THỂ TÍCH KHỐI TRÒN XOAY 13. 6. ỨNG DỤNG TÍCH PHÂN ĐỂ GIẢI QUYẾT CÁC BÀI TOÁN THỰC TẾ 18.
Toàn tập nguyên hàm và tích phân cơ bản
Tài liệu gồm 118 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề nguyên hàm và tích phân cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm, tích phân và ứng dụng. Nguyên hàm : + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p1. + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p2. + Cơ bản nguyên hàm đa thức + phân thức hữu tỷ p3. + Cơ bản nguyên hàm vô tỷ p1. + Cơ bản nguyên hàm vô tỷ p2. + Cơ bản nguyên hàm hàm số lượng giác p1. + Cơ bản nguyên hàm hàm số lượng giác p2. + Cơ bản nguyên hàm hàm số lượng giác p3. + Cơ bản nguyên hàm hàm số siêu việt p1. + Cơ bản nguyên hàm hàm số siêu việt p2. + Cơ bản nguyên hàm hàm số siêu việt p3. + Cơ bản nguyên hàm từng phần p1. + Cơ bản nguyên hàm từng phần p2. + Cơ bản nguyên hàm từng phần p3. + Tổng hợp cơ bản nguyên hàm p1. + Tổng hợp cơ bản nguyên hàm p2. + Tổng hợp cơ bản nguyên hàm p3. + Tổng hợp cơ bản nguyên hàm p4. + Tổng hợp cơ bản nguyên hàm p5. + Tổng hợp cơ bản nguyên hàm p6. + Tổng hợp cơ bản nguyên hàm p7. + Tổng hợp cơ bản nguyên hàm p8. + Tổng hợp cơ bản nguyên hàm p9. + Tổng hợp cơ bản nguyên hàm p10. + Tổng hợp cơ bản nguyên hàm p11. Tích phân : + Cơ bản tính chất tích phân p1. + Cơ bản tính chất tích phân p2. + Cơ bản tích phân hữu tỷ p1. + Cơ bản tích phân hữu tỷ p2. + Cơ bản tích phân hữu tỷ p3. + Cơ bản tích phân vô tỷ p1. + Cơ bản tích phân vô tỷ p2. + Cơ bản tích phân vô tỷ p3. + Cơ bản tích phân lượng giác p1. + Cơ bản tích phân lượng giác p2. + Cơ bản tích phân siêu việt p1. + Cơ bản tích phân siêu việt p2. + Cơ bản tích phân siêu việt p3. + Cơ bản tích phân từng phần p1. + Cơ bản tích phân từng phần p2. + Cơ bản tích phân từng phần p3. + Tổng hợp cơ bản tích phân p1. + Tổng hợp cơ bản tích phân p2. + Tổng hợp cơ bản tích phân p3. + Tổng hợp cơ bản tích phân p4. + Tổng hợp cơ bản tích phân p5. + Tổng hợp cơ bản tích phân p6. Ứng dụng nguyên hàm, tích phân : + Cơ bản ứng dụng tích phân diện tích p1. + Cơ bản ứng dụng tích phân diện tích p2. + Cơ bản ứng dụng tích phân diện tích p3. + Cơ bản ứng dụng tích phân diện tích p4. + Cơ bản ứng dụng tích phân diện tích p5. + Cơ bản ứng dụng tích phân thể tích p1. + Cơ bản ứng dụng tích phân thể tích p2. + Cơ bản ứng dụng tích phân thể tích p3. + Cơ bản ứng dụng tích phân thể tích p4. + Cơ bản ứng dụng tích phân thể tích p5. + Tổng hợp ứng dụng tích phân p1. + Tổng hợp ứng dụng tích phân p2. + Tổng hợp ứng dụng tích phân p3. + Tổng hợp ứng dụng tích phân p4.
Bất đẳng thức tích phân và một số bài toán liên quan
Tài liệu gồm 19 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán bất đẳng thức tích phân và một số bài toán liên quan, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN Cho các hàm số y f x và y g x có đạo hàm liên tục trên a b. Khi đó: Nếu f x g x với mọi x a b thì b b a a f x dx g x dx. Nếu f x 0 với mọi x a b thì 0 b a f x dx. Hệ quả: 2 0 0 b a f x dx f x. Bất đẳng thức Holder (Cauchy – Schwarz): 2 2 2 b b b a a a f x g x dx f x dx g x dx Đẳng thức xảy ra khi và chỉ khi f x kg x với k. B. BÀI TẬP Cho hàm số y f x có đạo hàm liên tục trên 02 đồng thời thỏa mãn điều kiện f2 2 2 0 xf x dx và 2 2 0 f x dx 10. Hãy tính tích phân 2 2 0 I x f x dx? Cho hàm số y f x có đạo hàm liên tục trên 12 đồng thời thỏa mãn 2 3 1 x f x dx 31. Tìm giá trị nhỏ nhất của tích phân 2 4 1 I f x dx? Cho hàm số y f x nhận giá trị không âm và liên tục trên đoạn 01 đồng thời ta đặt 0 1 x g x f t dt. Biết g x f x với mọi x 0 1. Tích phân 1 0 1 dx g x có giá trị lớn nhất bằng?