Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán năm 2019 2020 cụm trường THPT huyện Việt Yên Bắc Giang

Nội dung Đề chọn HSG Toán năm 2019 2020 cụm trường THPT huyện Việt Yên Bắc Giang Bản PDF Ngày 13 tháng 01 năm 2020, cụm các trường THPT huyện Việt Yên, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2019 – 2020. Đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang mã đề 101, đề gồm có 04 trang với 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 120 phút, chưa kể thời gian giám thị coi thi phát đề. Trích dẫn đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang : + Một người gửi 8 triệu đồng vào ngân hàng với lãi suất 0,6 % một tháng. Kể từ lần gửi đầu tiên cứ sau hai tháng người đó lại gửi vào ngân hàng với số tiền 8 triệu đồng. Hỏi sau đúng hai năm kể từ lần gửi đầu tiên số tiền người đó thu được cả gốc và lãi là bao nhiêu ? biết ngân hàng tính lãi trên số tiền có thực tế ở trong ngân hàng, trong suốt quá trình gửi người đó không rút ra một đồng nào (kết quả làm tròn đến hàng nghìn). A. 101,876 triệu đồng. B. 103,852 triệu đồng. C. 106,385 triệu đồng. D. 110,686 triệu đồng. + Cho khối chóp S.ABCD có đáy là hình bình hành, điểm M thuộc cạnh SC sao cho SM = kMC. Mặt phẳng (P) qua AM và song song với BD chia khối chóp thành hai khối đa diện (H) và (E), (H) là khối đa diện chứa đỉnh C. Gọi VH, VE lần lượt là thể tích của (H) và (E). Tìm k để VH = 6VE. [ads] + Trong không gian Oxyz, cho tam giác ABC có A(3;1;2), B(-1;5;4) và điểm C thuộc trục hoành. Điểm M(a;b;c) nằm trên cạnh AB sao cho diện tích tam giác MAC bằng 3 lần diện tích tam giác MBC. Mệnh đề nào dưới đây đúng? + Cho hình trụ có tâm của hai đáy là O, O’. Hai điểm A, B lần lượt nằm trên hai đường tròn (O), (O’) sao cho AB = 4a, góc giữa AB và OO’ bằng 30°. Khoảng cách giữa AB và OO’ bằng a√3. Diện tích toàn phần của hình trụ bằng? + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 9 lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau từng đôi một, trong đó có 3 chữ số lẻ và 2 chữ số chẵn. Tính tổng các số lập được. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Quảng Nam (đợt 1)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam (đợt 1); kỳ thi được diễn ra vào ngày 07 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Nam (đợt 1) : + Cho đường tròn (O) và hai điểm A, B cố định nằm trên đường tròn (O) sao cho ba điểm O, A, B không thẳng hàng. Xét một điểm C trên đường tròn (O) sao cho tam giác ABC không cân tại C. Gọi (O1) là đường tròn đi qua A và tiếp xúc với BC tại C; (O2) là đường tròn đi qua B và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai là D (D khác C). a) Tiếp tuyến của đường tròn (O) tại C cắt đường thẳng OD tại S. Chứng minh OA là tiếp tuyến của đường tròn ngoại tiếp tam giác ADS. b) Chứng minh đường thẳng CD luôn đi qua một điểm cố định khi điểm C di động trên đường tròn (O) (tam giác ABC không cân tại C). + Cho tập hợp X có 2023 phần tử. Hỏi có tất cả bao nhiêu cách chọn hai tập hợp con khác nhau của X sao cho giao của hai tập hợp này là một tập hợp có đúng một phần tử? + Tìm tất cả các cặp số nguyên tố p và q thỏa mãn 2^p + 2^q chia hết cho p.q.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển của tỉnh dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra trong hai ngày: 06/10/2022 (ngày thi thứ nhất) và 07/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Tìm tất cả các đa thức P(x) hệ số thực, thỏa mãn: Nếu tồn tại các số thực a, b, c sao cho 7P(a) + 10P(b) + 2022P(c) = 0 thì 7a + 10b + 2022c = 0. + Cho tam giác ABC nội tiếp (O) cố định, BC cố định và điểm A thay đổi trên cung lớn BC sao cho tam giác ABC nhọn, không cân. Lấy điểm X trên đường thẳng AC và điểm Y trên đường thẳng AB sao cho BX, CY vuông góc BC, đường tròn (AXY) cắt (O) tại L khác A. a) Gọi AD là đường kính của (O). Chứng minh rằng đường thẳng DL luôn đi qua điểm cố định khi A thay đổi. b) Gọi P, Q lần lượt là giao điểm thứ hai của BX, CY với đường tròn(AXY). Chứng minh rằng giao điểm của PQ và tiếp tuyến tại A của đường tròn (AXY) luôn nằm trên một đường cố định. c) Chứng minh rằng tiếp tuyến tại A của đường tròn (AXY), tiếp tuyến tại L của (O) và đường thẳng BC đồng quy. + Có 2022 học sinh ngồi thành một vòng tròn. Ban đầu, một học sinh nào đó sẽ được đưa cho n đồng xu, n là số nguyên dương. Ở mỗi lượt, tất cả các học sinh hiện có ít nhất 2 đồng xu sẽ chuyển 2 đồng xu sang hai học sinh ngồi bên cạnh (mỗi người 1 đồng xu). a) Chứng minh rằng với n < 2022, quá trình này sẽ dừng sau hữu hạn lượt. b) Chứng minh rằng với n = 2022, quá trình này sẽ kéo dài vô hạn.
Đề chọn học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 27 tháng 09 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho dãy số (un) xác định bởi u1 = 1; un+1 = un + 2/un + n/un^4 với mọi n nguyên dương. Chứng minh dãy số (yn) với yn = un/n (n nguyên dương) có giới hạn hữu hạn. Tính giới hạn đó. + Cho tam giác ABC không cân nội tiếp đường tròn (O). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc các cạnh BC, CA, AB lần lượt tại D, E, F. H là hình chiếu vuông góc của D lên EF. Tia IH cắt đường tròn (O) tại K. Đường tròn ngoại tiếp hai tam giác KBF, KCE cắt nhau tại T khác K. Gọi M là trung điểm TD. Qua M kẻ tiếp tuyến MN của đường tròn (I) (N là tiếp điểm khác D). a) Chứng minh T, E, F thẳng hàng và đường tròn ngoại tiếp tam giác NBC tiếp xúc (I). b) AN cắt đường tròn ngoại tiếp tam giác NBC ở S khác N. Hai tiếp tuyến của đường tròn (I) kẻ từ S cắt đường tròn ngoại tiếp tam giác NBC lần lượt tại P, Q. Chứng minh hai đường thẳng PQ và BC song song với nhau. + Hình vuông ABCD có độ dài cạnh là 2023 được chia thành 2023^2 ô vuông đơn vị. Ta kí hiệu (m;n) là ô ở hàng thứ m và cột thứ n. Người ta tô tất cả các ô vuông đơn vị bởi hai màu xanh, đỏ sao cho hai ô khác nhau đối xứng qua đường thẳng AC thì được tô khác màu. Gọi S là tập hợp các bộ ba số m, n, p đôi một khác nhau (không phân biệt thứ tự); m, n, p thuộc {1; 2; 3; …; 2023} sao cho các ô (m;n), (n;p) và (p;m) có cùng màu. Kí hiệu |S| là số phần tử tập hợp S. a) Tồn tại hay không cách tô màu sao cho |S| = 0? b) Chứng minh rằng: |S| =< 1^2 + 2^2 + … +1011^2.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Tiền Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển học sinh giỏi dự thi cấp Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra trong hai ngày: 04/10/2022 (ngày thi thứ nhất) và 05/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Tiền Giang : + Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Tiếp tuyến tại B và C của (O) cắt nhau ở S. Gọi M là trung điểm BC. EM cắt SC tại I, FM cắt SB tại J. a) Chứng minh rằng các điểm I, S, M, J cùng nằm trên một đường tròn. b) Đường tròn đường kính AH cắt (O) tại điểm thứ hai là T. Đường thẳng AH cắt (O) tại điểm thứ hai là K. Chứng minh rằng S, K, T thẳng hàng. + Cho p là số nguyên tố có dạng 4k + 1(k thuộc N). Chứng minh rằng tồn tại số nguyên dương a sao cho a2 + 1 chia hết cho p. + Cho p là số nguyên tố. Chứng minh rằng tồn tại các số nguyên x, y, z, w với 0 < w < p thỏa mãn x2 + y2 + z2 − wp = 0.