Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ

Nguồn: toanmath.com

Đọc Sách

Bài toán chứa tham số trong phương trình bậc hai
Tài liệu gồm 38 trang, hướng dẫn phương pháp giải bài toán chứa tham số trong phương trình bậc hai, giúp học sinh rèn luyện khi học chương trình Đại số 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. I – KIẾN THỨC CƠ BẢN 1. Ứng dụng hệ thức Vi-ét. + Điều kiện phương trình bậc hai có hai nghiệm trái dấu. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt cùng dấu. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt dương. + Điều kiện phương trình bậc hai có hai nghiệm phân biệt âm. 2. Các hệ thức thường gặp. II – CÁC VÍ DỤ MINH HỌA Gồm 77 ví dụ minh họa hay và khó, có đáp án và lời giải chi tiết.
Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu. + Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định ta thu được một hình cầu. + Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu. + Điểm O gọi là tâm, R là bán kính của hình cầu hay mặt cầu đó. 2. Cắt hình cầu bởi một mặt phẳng. + Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn. + Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn, trong đó: đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn). 3. Diện tích, thể tích. Cho hình cầu bán kính R: + Diện tích mặt cầu: S = 4piR^2. + Thể tích hình cầu: V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Phương pháp giải: Áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng các công thức trên và các kiến thức đã học để tính các đại lượng chưa biết rồi từ đó tính diện tích mặt cầu, thể tích hình cầu. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Cho hình trụ có bán kính đáy R và chiều cao h. Khi đó: 1. Diện tích xung quanh: Sxq = 2piRh. 2. Diện tích đáy: S = piR^2. 3. Diện tích toàn phần: Stp = 2piRh + 2piR^2. 4. Thể tích: V = piR^2h. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Vận dụng các công thức trên để tính bán kính đáy, chiều cao, diện tích đáy, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng một cách linh hoạt kiến thức về hình học phẳng đã được học kết hợp các công thức và lí thuyết về hình trụ kết hợp giải bài tập. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề diện tích hình tròn, hình quạt tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề diện tích hình tròn, hình quạt tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức diện tích hình tròn: Diện tích S của một hình tròn bán kinh R được tính theo công thức: S = pi.R^2. 2. Công thức diện tích hình quạt tròn: Diện tích hình quạt tròn bán kính E, cung n0 được tính theo công thức: S = piR^2n/360 hay S = lR/2 (l là độ dài cung n0 của hình quạt tròn). II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Áp dụng các công thức trên và các kiến thức đã có. Dạng 2. Bài toán tổng hợp. Phương pháp giải: Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kính đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO