Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 10 năm học 2018 - 2019 trường Yên Mô B - Ninh Bình

Đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 trường Yên Mô B – Ninh Bình mã đề 101, đề gồm 25 câu trắc nghiệm khách quan và 3 câu tự luận, tỉ lệ điểm trắc nghiệm : tự luận là 5:5, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm học 2018 – 2019 trường Yên Mô B – Ninh Bình : + Cho ΔABC biết A(1;2), B(3;-1), C(6;1). Mệnh đề nào sau đây đúng? A. ΔABC vuông tại A. B. ΔABC vuông tại B. C. ΔABC vuông tại C. D. ΔABC đều. + Cho tam giác ΔABC biết AC = 2AB; AD là đường phân giác trong góc A, (D thuộc BC). Biết rằng AD = mAB + kAC. Giá trị của biểu thức S = 3m + 2019k bằng? [ads] + Cho tam giác ΔABC biết A(1;2), B(5;5), C(4;6). a) Tính AB.AC. Chứng minh rằng tam giác ΔABC cân. b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. c) Tìm tọa độ điểm M thuộc Ox sao cho ΔABM vuông tại A.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Trung Trực - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong mặt phẳng tọa độ Oxy cho A (–2;–2), B (3;8), C (6;2). a) Chứng minh A, B, C là ba đỉnh của tam giác và tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm điểm D sao cho ABCD là hình bình hành và tìm tọa độ tâm I của hình bình hành. c) Chứng minh tam giác ABC vuông và tính diện tích của tam giác. d) Tìm tọa độ H là chân đường cao hạ từ đỉnh góc vuông xuống cạnh huyền của tam giác ABC. + Định tham số m để phương trình sau có tập nghiệm là R: m2(x + 1) – 1 = (4 – 3m)x. + Định tham số m để phương trình: (m + 1)x2 + 2(m – 2)x + m = 0 có hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho Parabol (P): y = -x2 – 2x + 2 và đường thẳng (d): y = 2x – 3. a) Lập bảng biến thiên và vẽ đồ thị (P). b) Tìm giao điểm của (P) và (d). + Cho tam giác ABC, có tọa độ các đỉnh A(2;4), B(1;2), C(6;2). a) Tìm tọa độ trung điểm của cạnh AC và trọng tâm G của tam giác ABC. b) Chứng minh ABC là tam giác vuông và tính diện tích tam giác ABC. c) Xác định tọa độ điểm D sao cho ABCD là hình bình hành. + Giải các phương trình sau.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Văn Tăng - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Văn Tăng, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Văn Tăng – TP HCM : + Tìm tập xác định của hàm số. + Xác định phương trình của parabol (P): y = ax2 + 3x + c (a khác 0) biết (P) đi qua hai điểm A(2;1) và B(-3;4)? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3), B(-2;1), C(-2;11). a) Chứng minh rằng tam giác ABC là tam giác vuông tại A. Tính diện tích tam giác ABC. b) Gọi G là trọng tâm tam giác ABC. Tính độ dài đoạn thẳng AG. c) Tìm tọa độ điểm D thỏa AD = 2BC. d) Tìm tọa độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Thiêm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Thiêm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Thiêm – TP HCM : + Trong mặt phẳng (Oxy), cho ba điểm A(2;-1); B(4;4); C(-2;-4). a) Chứng minh A, B, C tạo thành tam giác. Tính chu vi tam giác ABC. b) Tìm D sao cho tứ giác AODC là hình bình hành. Tìm tọa độ tâm I của hình bình hành. c) Tìm tọa độ trực tâm H của tam giác ABC. + Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 2x^2 – 4x – 3. + Tìm hàm số y = ax^2 + bx + 8 biết đồ thị của hàm số là một parabol có đỉnh S(-3;17).