Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán thực tế ôn thi vào môn Toán

Nội dung Các dạng toán thực tế ôn thi vào môn Toán Bản PDF - Nội dung bài viết Các dạng toán thực tế ôn thi vào môn Toán Các dạng toán thực tế ôn thi vào môn Toán Thông tin về sản phẩm: Tài liệu này bao gồm 188 trang, là tuyển tập các dạng toán thực tế để ôn thi vào lớp 10 môn Toán. Sách cung cấp đầy đủ đáp án và lời giải chi tiết cho từng dạng toán. Dạng Toán lớp 1: Dạng toán chuyển động Trong loại dạng toán này, cần chú ý đến công thức S = vt, với S là quãng đường, v là vận tốc và t là thời gian. Nguyên tắc cộng vận tốc cũng cần được áp dụng, ví dụ như vận tốc xuôi dòng = vận tốc thực + vận tốc dòng nước. Dạng Toán lớp 2: Dạng toán năng suất và công việc Phải thực hiện việc tính toán dựa trên công thức NS 1 + NS 2 = tổng NS và sử dụng thông tin về khối lượng công việc để giải quyết vấn đề. Dạng Toán lớp 3: Dạng toán liên quan đến tuổi Ví dụ: Tính tuổi trung bình của giáo viên nam và giáo viên nữ trong một trường, biết rằng số giáo viên nữ gấp ba lần số giáo viên nam. Dạng Toán lớp 4: Dạng toán liên quan đến kinh doanh Đưa ra ví dụ về việc tính toán lợi nhuận hoặc lỗ khi sản xuất và bán hàng. Dạng Toán lớp 5: Dạng toán hình học Ví dụ: Xác định đã tràn nước hay chưa khi chuyển nước từ lọ hình trụ này sang lọ hình trụ khác. Dạng Toán lớp 6: Dạng toán liên quan đến bộ môn Hóa học Ví dụ: Tính toán về nồng độ dung dịch trước và sau khi thêm nước vào dung dịch chứa muối. Dạng Toán lớp 7: Dạng toán liên quan đến bộ môn Vật lý Phải áp dụng công thức để ước lượng tốc độ xe trên đường và giải quyết vấn đề liên quan đến vật lý. Dạng Toán lớp 8: Dạng toán tổng hợp Ví dụ: Xác định ngày trong tuần dựa trên ngày, tháng và năm cụ thể. Đây là một tài liệu hữu ích để ôn thi môn Toán, cung cấp đầy đủ các dạng toán thực tế giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và áp dụng kiến thức vào thực tế.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào
Nội dung Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Tài liệu này có tổng cộng 31 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề về hàm số bậc nhất và hàm số bậc hai. Nội dung của tài liệu bao gồm các bài tập được chọn lọc từ các đề thi tuyển sinh vào lớp 10 môn Toán, kèm theo đáp án và lời giải chi tiết. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.
Chuyên đề biến đổi đại số ôn thi vào
Nội dung Chuyên đề biến đổi đại số ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu này bao gồm 31 trang, cung cấp hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán được lựa chọn từ các nguồn đáng tin cậy, đảm bảo chất lượng và phong phú cho việc ôn tập của học sinh.
Một số bài toán về đường cố định và điểm cố định
Nội dung Một số bài toán về đường cố định và điểm cố định Bản PDF - Nội dung bài viết Một số bài toán về đường cố định và điểm cố địnhKiến thức cần nhớCác bước giải bài toán về đường cố định và điểm cố định Một số bài toán về đường cố định và điểm cố định Trong tài liệu này, bạn sẽ được giới thiệu với 71 trang tập hợp một số bài toán về đường cố định và điểm cố định, đều hay và khó, với đáp án và lời giải chi tiết. Đây là công cụ hữu ích cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi vào lớp 10 môn Toán cũng như cho các kỳ thi học sinh giỏi môn Toán trình độ trung học cơ sở. Kiến thức cần nhớ Để giải các bài toán về đường cố định và điểm cố định, bạn cần có kĩ năng phân tích bài toán và suy nghĩ sâu để tìm ra lời giải. Một trong những bước quan trọng là dự đoán yếu tố cố định, có thể thực hiện bằng cách giải bài toán trong trường hợp đặc biệt, xét các đường đặc biệt của một họ đường, hoặc dựa vào tính đối xứng, tính độc lập của các đối tượng. Các bước giải bài toán về đường cố định và điểm cố định Tìm hiểu bài toán: Xác định yếu tố cố định, yếu tố chuyển động, yếu tố không đổi và quan hệ không đổi Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt để dự đoán yếu tố cố định Tìm tòi hướng giải: Tìm mối quan hệ giữa yếu tố cố định với các yếu tố khác Để hiểu rõ hơn về cách giải bài toán về đường cố định và điểm cố định, tài liệu cung cấp các ví dụ minh họa và bài tập tự luyện, kèm theo hướng dẫn giải chi tiết.
Một số bài toán về diện tích
Nội dung Một số bài toán về diện tích Bản PDF - Nội dung bài viết Một số bài toán về diện tích Một số bài toán về diện tích Trong tài liệu này, chúng ta sẽ tìm hiểu về một số bài toán về diện tích, nhằm giúp học sinh có thêm kiến thức và kỹ năng trong việc giải các bài toán liên quan. Dưới đây là một số kiến thức cơ bản cần nhớ: 1. Các tính chất cơ bản của diện tích đa giác: Mỗi đa giác có diện tích xác định và là một số dương. Diện tích của hai đa giác bằng nhau khi chúng bằng nhau. Diện tích của hình vuông đơn vị là 1. Diện tích của đa giác được chia thành các đa giác con là tổng diện tích của các đa giác con đó. Nếu diện tích của một đa giác suy biến là 0 thì các đỉnh của đa giác đó cùng nằm trên một đường thẳng. 2. Diện tích tam giác: Diện tích tam giác ABC bằng nửa tích số ba cạnh và nửa chu vi: S = √(p(p-a)(p-b)(p-c)). Bán kính đường tròn ngoại tiếp tam giác ABC: R = abc / 4S. 3. Diện tích các tứ giác: Hình chữ nhật: S = a * b. Hình thang: S = 1/2 * (a + b) * h. Hình bình hành: S = a * h. Tứ giác có hai đường chéo vuông góc: S = 1/2 * d1 * d2. 4. Một số tính chất cơ bản về diện tích tam giác: Đường trung tuyến của một tam giác chia tam giác thành hai phần có diện tích bằng nhau. Trong tam giác ABC, ta luôn có AB * AC * sin(∠BAC) / 2 = SABC. Đây là những kiến thức cơ bản nhưng quan trọng về diện tích mà mọi học sinh cần ghi nhớ để giải quyết các bài toán một cách thành công. Hãy thực hành và áp dụng kiến thức này để cải thiện kỹ năng giải bài toán của mình!