Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)

Thứ Ba ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt yêu cầu về mặt kiến thức, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) được dùng cho mọi thí sinh thi vào trường, đề gồm 1 trang với 5 bài toán, học sinh làm bài thi trong khoảng thời gian 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) : + Trên quãng đường AB dài 20km, tại cùng một thời điểm, bạn An đi bộ từ A đến B và bạn Bình đi bộ từ B về A. Sau 2 giờ kể từ lúc xuất phát, An và Bình gặp nhau tại C và cùng nghỉ tại C 15 phút (vận tốc của An trên quãng đường AC không thay đổi, vận tốc của Bình trên quãng đường BC không thay đổi). Sau khi nghỉ, An đi tiếp đến B với vận tốc nhỏ hơn vận tốc của An trên quãng đường AC là 1 km/h, Bình đi tiếp đến A với vận tốc lớn hơn vận tốc của Bình trên quãng đường BC là 1 km/h. Biết rằng An đến B sớm hơn so với Bình đến A là 48 phút. Hỏi vận tốc của An trên quãng đường AC là bao nhiêu? [ads] + Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Gọi AA1, BB1, CC1 là các đường cao của tam giác ABC. Đường thẳng A1C1 cắt đường tròn (O) tại A’ và C’ (A1 nằm giữa A’ và C1). Các tiếp tuyến của đường tròn (O) tại A’ và C’ cắt nhau tại B’. 1. Gọi H là trực tâm của tam giác ABC. Chứng minh: HC1.A1C=A1C1.HB1. 2. Chứng minh ba điểm B,B’,O thằng hàng. 3. Khi tam giác ABC là tam giác đều. Hãy tính A’C’ theo R. + Cho các đa thức: P(x) = x^2 + ax + b, Q(x) = x^2 + cx + d với a, b, c, d là các số thực. 1. Tìm a và b để 1 và a là nghiệm của phương trình P(x) = 0. 2. Giả sử phương trình P(x) = 0 có hai nghiệm phân biệt x1, x2 và phương trình Q(x) = 0 có hai nghiệm phân biệt x3, x4 sao cho P(x3) + P(x4) = Q(x1) + Q(x2). Chứng minh: |x2 – x1| = |x4 – x3|.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2022 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề tuyển sinh môn Toán năm 2022 trường Nguyễn Tất Thành Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 trường Nguyễn Tất Thành Hà Nội Đề thi tuyển sinh môn Toán năm 2022 trường Nguyễn Tất Thành Hà Nội Chào mừng quý thầy, cô giáo và các em học sinh lớp 9! Dưới đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm 2022 của trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội. Bài thi bao gồm các câu hỏi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 trường Nguyễn Tất Thành – Hà Nội: Đề bài 1: Để đo độ rộng của một khúc sông, hãy tính độ rộng h của khúc sông dựa trên thông tin về khoảng cách và góc nghiêng. Đề bài 2: Tính bán kính của miếng tồn hình tròn sau khi cắt ra một vật nhọn hình tam giác cân. Đề bài 3: Xác định số tiền cần để sơn toàn bộ mặt trên của biển báo giao thông hình tròn, biết rằng chi phí sơn mỗi màu khác nhau. Mời quý thầy, cô giáo và các em học sinh tham gia giải bài tập và kiểm tra kiến thức môn Toán của mình. Chúc các em thành công!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hà Giang
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Hà Giang Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2022-2023 sở GDĐT Hà Giang Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Kỳ thi sẽ diễn ra vào ngày 15 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022-2023 của sở GDĐT Hà Giang: Tìm giá trị của m để phương trình x^2 + 2mx - 2m - 6 = 0 (với m là tham số) có hai nghiệm x1, x2 sao cho x1^2 + x2^2 đạt giá trị nhỏ nhất. Tìm nghiệm nguyên của phương trình (2x + y)(x - y) + x + 8y = 22. Cho đường tròn (O) có đường kính BC và H là một điểm nằm trên đoạn thẳng BO. Vẽ đường thẳng vuông góc với BC qua H, cắt đường tròn (O) tại A và D. Gọi M là giao điểm của AC và BD, qua M vẽ đường thẳng vuông góc với BC tại N. a) Chứng minh rằng tứ giác MNBA là tứ giác nội tiếp. b) Chứng minh rằng 2BH·BO = AB^2, tính giá trị của P. c) Vẽ tiếp tuyến từ B đến đường tròn (O), cắt AC và AN lần lượt tại K và E. Chứng minh rằng đường thẳng EC đi qua trung điểm I của đoạn thẳng AH khi H di động trên BO. Mong rằng với đề thi này, các em học sinh sẽ có cơ hội thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Cao Bằng Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Cao Bằng Sytu xin gửi đến các thầy cô và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Cao Bằng. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không tính thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GD&ĐT Cao Bằng: Cho Parabol (P): y = mx^2 và đường thẳng (d): y = 2x - m^2 (với m > 0). Hãy tìm giá trị của m để (d) cắt (P) tại hai điểm A và B, và chứng minh rằng A và B nằm bên phải trục tung. Cho nửa đường tròn (O;R) có đường kính AB. Đường thẳng d tiếp xúc (O) tại B. Trên cung AB, chọn điểm M (M khác A và B). Tia AM cắt d tại C. I là trung điểm của AM, IO cắt d tại N. Hãy chứng minh rằng OBCI nội tiếp, AI.IC = IO.IN và E là hình chiếu của O trên AN. Cần chứng minh điều gì? Cho hệ phương trình với tham số m. Tìm giá trị nguyên của m để hệ phương trình có một nghiệm duy nhất (x;y) sao cho A = 3x - y là số nguyên. Nội dung đề thi truyền đạt thông điệp về tính logic, tư duy và khả năng giải quyet vấn đề của các thí sinh. Hãy chuẩn bị kỹ lưỡng và tự tin cho kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Tiền Giang Chào đón quý thầy cô và các em học sinh lớp 9, mùa tuyển sinh năm nay đã đến. Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán, chúng tôi xin giới thiệu đề thi chính thức môn Toán của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Đề thi sẽ diễn ra vào ngày 18 tháng 06 năm 2022, và dưới đây là một số câu hỏi mẫu từ đề tuyển sinh: Phương trình của parabol (P) đi qua điểm M(3;3) và cắt đường thẳng (d): y = -1/2.x + m tại hai điểm A và B. Tìm phương trình của parabol (P) và giá trị của tham số m để điều này xảy ra. Chứng minh rằng nếu x1, x2, x3, x4 là nghiệm của hệ thức x2 + mx + 1 = 0 và x2 + nx + 1 = 0, thì áp dụng một quy tắc nhất định. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức S = x – y + 2 trong khi x và y thỏa mãn một đẳng thức cụ thể. Chứng minh các tính chất trong tam giác ABC nội tiếp đường tròn tâm O và chứng minh các quan hệ HE/HF = NB/NC, HE.MQ.HB = HF.MP.NC Hy vọng rằng đề thi này sẽ giúp các em tự tin và hiểu biết rõ hơn về kiến thức Toán cũng như chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao trong kỳ thi tuyển sinh!