Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải hệ phương trình đại số - Nguyễn Quốc Bảo

Tài liệu gồm 203 trang, được tổng hợp bởi thầy giáo Nguyễn Quốc Bảo, tuyển tập các dạng toán và hướng dẫn phương pháp giải hệ phương trình đại số, tài liệu phù hợp với mục đích bồi dưỡng học sinh giỏi môn Toán lớp 8 – 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Mục lục tài liệu các dạng toán và phương pháp giải hệ phương trình đại số – Nguyễn Quốc Bảo: Phần I . MỘT SỐ DẠNG HỆ PHƯƠNG TRÌNH THƯỜNG GẶP. 1. Hệ phương trình bậc nhất hai ẩn. 2. Hệ gồm một phương trình bậc hai và một phương trình bậc nhất hai ẩn. 3. Hệ đối xứng loại I. 4. Hệ đối xứng loại II. 5. Hệ phương trình có yếu tố đẳng cấp. 6. Hệ chứa trị tuyệt đối. 7. Hệ phương trình bậc cao. 8. Hệ phương trình chứa căn thức. 9. Hệ phương trình mũ. 10. Hệ phương trình ba ẩn. Phần II . CÁC KĨ THUẬT GIẢI HỆ PHƯƠNG TRÌNH. 1. Kĩ thuật thế trong giải hệ phương trình. 2. Kĩ thuật phân tích thành nhân tử. 3. Kĩ thuật nhân, chia, cộng, trừ hai vế của hệ phương trình. 4. Kĩ thuật đặt ẩn phụ. 5. Kĩ thuật nhân liên hợp đối với hệ chứa căn. 6. Kĩ thuật đánh giá trong giải hệ phương trình. 7. Kĩ thuật hệ số bất định trong giải hệ phương trình. BÀI TẬP RÈN LUYỆN TỔNG HỢP HƯỚNG DẪN GIẢI – ĐÁP SỐ Mỗi chủ đề gồm ba phần: A. Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản, những kiến thức bổ sung cần thiết để làm cơ sở giải các bài tập thuộc các dạng của chuyên đề. B. Ví dụ minh họa: Đưa ra những ví dụ chọn lọc, tiêu biểu chứa đựng những kĩ năng và phương pháp luận mà chương trình đòi hỏi. Mỗi ví dụ thường có: Lời giải kèm theo những nhận xét, lưu ý, bình luận và phương pháp giải, về những sai lầm thường mắc nhằm giúp học sinh tích lũy thêm kinh nghiệm giải toán, học toán. C. Bài tập vận dụng: Hệ thống các bài tập được phân loại theo các dạng toán, tăng dần độ khó cho học sinh khá giỏi, có hướng dẫn hoặc lời giải.

Nguồn: toanmath.com

Đọc Sách

5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng
Nội dung 5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu được soạn bởi thầy giáo Lê Văn Hưng, tập hợp 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, bao gồm 182 trang đầy đủ kiến thức cần thiết từ lý thuyết đến các dạng bài tập thực hành. Trước mỗi chủ đề, tài liệu tổng hợp và tóm tắt những khái niệm quan trọng mà học sinh cần hiểu rõ, cung cấp hướng dẫn cụ thể cho việc giải các dạng bài tập phổ biến. Bên cạnh đó, tài liệu cũng chọn lọc và biên soạn các bài tập tự luyện từ các đề thi tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội. Đây thực sự là nguồn tài liệu hữu ích và chuẩn bị tốt cho học sinh chuẩn bị bước vào kỳ thi tuyển sinh quan trọng. Nhờ tài liệu của thầy Lê Văn Hưng, học sinh có thể tự tin hơn trong việc ôn luyện và đạt kết quả cao trong kỳ thi sắp tới.
Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi
Nội dung Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi Bản PDF - Nội dung bài viết Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Trên 98 trang tài liệu của tác giả Nguyễn Công Lợi, chúng ta được đưa vào thế giới của những bài toán bất đẳng thức phức tạp và thú vị. Tác giả không chỉ tuyển chọn những bài toán hay mà còn hướng dẫn chúng ta qua quá trình phân tích từng bước một để tìm ra lời giải cho chúng. Qua việc giải các bài toán này, chúng ta có cơ hội hiểu rõ hơn về cách phân tích các giả thiết và bất đẳng thức trong bài toán, từ đó đưa ra nhận định chính xác và hướng dẫn cho việc giải bài toán. Điều này không chỉ giúp chúng ta rèn luyện tư duy logic mà còn giúp chúng ta cải thiện kỹ năng giải quyết vấn đề. Tài liệu này không chỉ là một công cụ hữu ích để rèn luyện kiến thức mà còn là nguồn cảm hứng để chúng ta không ngừng trau dồi và phát triển khả năng tư duy toán học của mình. Đây thực sự là một tài liệu không thể thiếu đối với những ai đam mê toán học và mong muốn thách thức bản thân mình với những bài toán đầy tính chất khó khăn.
Chuyên đề phương trình nghiệm nguyên
Nội dung Chuyên đề phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Bài toán phương trình nghiệm nguyên: một bài toán quen thuộc trong toán học Bài toán phương trình nghiệm nguyên: một bài toán quen thuộc trong toán học Phương trình nghiệm nguyên là một dạng bài toán mà chúng ta thường gặp trong toán học. Để giải quyết bài toán này, chúng ta cần tìm ra giá trị nguyên của biến số trong phương trình. Dạng bài toán này không chỉ giúp chúng ta rèn luyện kỹ năng tính toán mà còn khuyến khích sự logic và suy luận. Khi giải phương trình nghiệm nguyên, chúng ta cần xác định giá trị nguyên của biến số sao cho phương trình được thỏa mãn. Điều này đòi hỏi chúng ta phải áp dụng các kỹ thuật tính toán, quy tắc và phương pháp giải bài toán một cách chính xác và logic. Bài toán phương trình nghiệm nguyên không chỉ giúp chúng ta hiểu rõ hơn về khái niệm của phương trình mà còn giúp chúng ta phát triển kỹ năng giải quyết vấn đề một cách tỉ mỉ và chính xác. Đồng thời, thông qua việc giải bài toán này, chúng ta cũng có thể áp dụng kiến thức vào các bài toán thực tế khác.
Chuyên đề số chính phương
Nội dung Chuyên đề số chính phương Bản PDF - Nội dung bài viết Số chính phương - một khái niệm cơ bản trong toán học Số chính phương - một khái niệm cơ bản trong toán học Số chính phương là số mà có thể được biểu diễn dưới dạng bình phương của một số nguyên. Ví dụ, 0, 1, 4, 9, 16, ... là các số chính phương vì chúng có thể được viết dưới dạng bình phương của một số nguyên. Số chính phương là một khái niệm quan trọng trong toán học và được sử dụng trong nhiều lĩnh vực khác nhau như trong số học, lý thuyết số, đại số và hình học.