Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề cơ bản môn Toán 7 Kết Nối Tri Thức Với Cuộc Sống (tập 1)

Tài liệu gồm 96 trang, bao gồm lý thuyết và các dạng bài tập cơ bản chuyên đề môn Toán 7 Kết Nối Tri Thức Với Cuộc Sống (tập 1). Chương I . SỐ HỮU TỈ. Bài 1. Tập hợp các số hữu tỉ. Bài 2. Cộng, trừ, nhân, chia số hữu tỉ. Bài 3. Luỹ thừa với số mũ tự nhiên của một số hữu tỉ. Bài 4. Thứ tự thực hiện các phép tính. Quy tắc chuyển vế. Chương II . SỐ THỰC. Bài 5. Làm quen với số thập phân vô hạn tuần hoàn. Bài 6. Số vô tỉ. Căn bậc hai số học. Bài 7. Tập hợp các số thực. Chương III . GÓC VÀ ĐƯỜNG THẲNG SONG SONG. Bài 8. Góc ở vị trí đặc biệt. Tia phân giác của một góc. Bài 9. Hai đường thẳng song song và dấu hiệu nhận biết. Bài 10. Tiên đề Euclid. Tính chất của hai đường thẳng song song. Bài 11. Định lí và chứng minh định lí. Chương IV . TAM GIÁC BẰNG NHAU. Bài 12. Tổng các góc trong một tam giác. Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác. Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác. Bài 15. Các trường hợp bằng nhau của tam giác vuông. Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng. Chương V . THU THẬP VÀ BIỂU DIỄN DỮ LIỆU. Bài 17. Thu thập và phân loại dữ liệu. Bài 18. Biểu đồ hình quạt tròn. Bài 19. Biểu đồ đoạn thẳng.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác Toán 7
Tài liệu gồm 56 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác trong chương trình môn Toán 7. CHUYÊN ĐỀ 1 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TUYẾN TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Sử dụng tính chất trọng tâm của tam giác. – Sử dụng linh hoạt các tỉ số liên quan đến trọng tâm tam giác. Dạng 2. Chứng minh một điểm là trọng tâm của tam giác. – Để chứng minh một điểm là trọng tâm của tam giác, ta có thể dùng một trong hai cách sau: + Chứng minh điểm đó là giao điểm của hai đường trung tuyến trong tam giác. + Chứng minh điểm đó thuộc một đường trung tuyến của tam giác và thỏa mãn một trong các tỉ lệ về tính chất trọng tâm của tam giác. Dạng 3. Vấn đề đường trung tuyến trong tam giác vuông, tam giác cân, tam giác đều. – Chú ý những tính chất của tam giác vuông, tam giác cân, tam giác đều. PHẦN III. BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG PHÂN GIÁC TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Chứng minh đoạn thẳng bằng nhau, góc bằng nhau, tính độ dài đoạn thẳng, số đo góc. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. + Tổng ba góc trong một tam giác bằng 180 độ. Dạng 2. Chứng minh ba đường đồng quy, ba điểm thẳng hàng. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. Dạng 3. Đường phân giác đối với tam giác đặc biệt (tam giác cân, tam giác đều). – Sử dụng tính chất: trong tam giác cân, đường phân giác của góc ở đỉnh cũng đồng thời là đường trung tuyến, đường cao. Dạng 4. Chứng minh mối quan hệ giữa các góc. – Vận dụng các tính chất tia phân giác của một góc để tìm mối liên hệ giữa các góc. – Dùng định lí tổng ba góc trong một tam giác bằng 180 độ. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng. – Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. – Tính khoảng cách từ một điểm đến một đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2 . Quan hệ giữa đường vuông góc và đường xiên. – Sử dụng định lý đường vuông góc ngắn hơn đường xiên (từ một điểm đến cùng một đường thẳng). PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.