Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2020 2021 trường THCS Nguyễn Tri Phương Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 trường THCS Nguyễn Tri Phương Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 - 2021 trường THCS Nguyễn Tri Phương Hà Nội Đề KSCL Toán lớp 9 năm 2020 - 2021 trường THCS Nguyễn Tri Phương Hà Nội Chúng ta sẽ cùng khám phá đề KSCL Toán lớp 9 năm học 2020 - 2021 của trường THCS Nguyễn Tri Phương ở quận Ba Đình, thành phố Hà Nội. Đề thi này bao gồm các câu hỏi đa dạng với đáp án và lời giải chi tiết, cùng hướng dẫn chấm điểm cho từng phần. Một trong những bài toán trong đề thi đề cập đến việc sản xuất khẩu trang trong bối cảnh đại dịch Covid-19. Hai tổ sản xuất dự định làm 1000 hộp khẩu trang, nhưng tổ một và tổ hai đều vượt kế hoạch, khiến tổng số hộp khẩu trang được sản xuất là 1170. Học sinh sẽ phải tính toán để xác định số hộp khẩu trang mà mỗi tổ phải sản xuất theo kế hoạch đề ra. Câu hỏi tiếp theo yêu cầu học sinh giải phương trình bậc hai với tham số m, và tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện đặt ra. Bài toán cuối cùng liên quan đến tam giác và đường tròn. Học sinh sẽ phải chứng minh các tính chất của tam giác ABC và các điểm trên đường tròn ngoại tiếp tam giác. Đây là một đề thi mang tính chất thực tế và giúp học sinh rèn luyện khả năng giải quyết vấn đề từ những bài toán đơn giản đến phức tạp. Hy vọng rằng các em sẽ tự tin và thành công trong việc hoàn thành đề thi này.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Xuân Đỉnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Xuân Đỉnh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022.
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 07 tháng 10 năm 2022.
Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.
Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 9 năm học 2022 – 2023 trường THCS Cầu Diễn, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải làm được 18 sản phẩm. Nhưng thực tế do cải tiến kĩ thuật, mỗi ngày tổ đã làm được thêm 4 sản phẩm nên đã hoàn thành công việc trước 3 ngày và còn vượt mức 14 sản phẩm. Tính số sản phẩm tổ đó phải làm theo kế hoạch. + Cho tam giác MNP vuông tại M có đường cao MH; HN = 9cm; HP = 16cm. a) Tính: MN; MP; MH? b) Gọi I, K lần lượt là hình chiếu vuông góc của H lên MN, MP. Tính IK? c) Tính diện tích tứ giác NIKP? + Cho các số thực dương a, b thỏa mãn: ab > 202la + 2022b. Chứng minh bắt đẳng thức: a + b > (2021 + 2022)^2.