Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng phương trình đường thẳng

Tài liệu gồm 45 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình đường thẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững khái niệm vectơ chỉ phương của đường thẳng, góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. + Trình bày và vận dụng được các công thức tính khoảng cách, góc. + Trình bày được cách viết phương trình tham số của đường thẳng. + Trình bày được các vị trí tương đối của hai đường thẳng, của đường thẳng và mặt phẳng và của đường thẳng với mặt cầu. Vận dụng được các công thức để xét vị trí tương đối của hai đường thẳng; của đường thẳng với mặt phẳng và của đường thẳng với mặt cầu. Kĩ năng : + Biết cách viết phương trình tham số, phương trình chính tắc của đường thẳng. + Biết cách tính khoảng cách, tính góc. + Biết cách xét vị trí tương đối của hai đường thẳng, vị trí tương đối của đường thẳng với mặt phẳng và vị trí tương đối của đường thẳng với mặt cầu. I. LÍ THUYẾT TRỌNG TÂM I. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1: Xác định vectơ chỉ phương của đường thẳng. – Bài toán 2: Viết phương trình đường thẳng khi tìm được một vectơ chỉ phương và điểm thuộc đường thẳng. – Bài toán 3: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 2 : Các vấn đề về góc. – Bài toán 1: Góc giữa đường thẳng và mặt phẳng. – Bài toán 2: Góc giữa hai đường thẳng. Dạng 3 : Khoảng cách. – Bài toán 1: Khoảng cách từ một điểm đến đường thẳng. – Bài toán 2: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 4 : Vị trí tương đối. – Bài toán 1: Vị trí tương đối giữa đường thẳng và mặt phẳng. – Bài toán 2: Vị trí tương đối giữa hai đường thẳng. – Bài toán 3: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 5 : Một số bài toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập một số bài toán cực trị trong hình học tọa độ không gian - Lưu Huy Thưởng
Tài liệu gồm 20 trang tuyển chọn một số bài toán cực trị trong hình học tọa độ không gian, các bài toán được chia thành 2 phần: + Tuyển tập một số bài toán cực trị viết phương trình mặt phẳng + Tuyển tập một số bài toán cực trị viết phương trình đường thẳng Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: (x + 2)/1 = y/-2 = (z – 2)/2. Gọi Δ là đường thẳng qua điểm A(4;0;–1) song song với d. Gọi (P): Ax + By + Cz + D = 0 (A, B, C ∈ Z) là mặt phẳng chứa Δ và có khoảng cách đến d là lớn nhất. Khi đó M = A^2 + B^2 + C^2 có thể là giá trị nào sau đây? + Trong không gian với hệ toạ độ Oxyz, gọi (P) là mặt phẳng đi qua điểm M (1; 4; 9), cắt các tia Ox, Oy, Oz tại A, B, C sao cho biểu thức OA + OB + OC có giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây? [ads] + Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng (x + 1)/2 = (y – 1)/-1 = z/2. Gọi d là đường thẳng đi qua điểm B và cắt đường thẳng  tại điểm C sao cho diện tích tam giác ABC có giá trị nhỏ nhất. Đường thẳng d vuông góc với đường thẳng nào sau đây?
Chuyên đề hình học giải tích trong không gian - Trần Thông
Tài liệu gồm 111 trang gồm lý thuyết, công thức, dạng toán, hưỡng dẫn giải và bài tập trắc nghiệm có đáp án chuyên đề hình học giải tích trong không gian. Trong chương trình Hình học 12, các dạng toán liên quan đến đường thẳng, mặt phẳng, mặt cầu trong không gian là các dạng toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong đề thi trung học phổ thông quốc gia nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy còn nhiều bạn học sinh lúng túng nhiều trong quá trình giải các bài toán liên quan đến đường thẳng, mặt phẳng, mặt cầu. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề: Hình học giải tích trong không gian. Trong chuyên đề, tôi đã tóm tắt lý thuyết, phân loại các dạng bài tập từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Bên cạnh đó, trong chuyên đề này cũng giới thiệu lại một số dạng toán khó, lạ ít được sử dụng trong các kỳ thi những năm gần đây để bạn đọc có cái nhìn tổng quát hơn về hình học giải tích trong không gian. [ads] Chuyên đề gồm 4 phần: + Phần A: Kiến thức cần nhớ + Phần B: Bài tập minh họa + Phần C: Ứng dụng giải các bài tập hình học không gian thuần túy + Phần D: Bài tập trắc nghiệm
Phát huy kỹ thuật đặt trục giải nhanh hình học không gian từ A đến Z - Nguyễn Hữu Bắc
Sách gồm 370 trang trình bày cách giải nhanh hình học không gian bằng cách gắn hệ trục tọa độ, các bài tập trong sách đều có đáp án và lời giải chi tiết. Nội dung sách : Phần 1. Kiến thức cơ bản về hình học không gian Kiến thức cơ bản về các hình Phương pháp giải Phần 2. Giải theo 2 phương pháp Hình chóp [ads] + Dạng 1. Thể tích hình chóp đều + Dạng 2. Thể tích hình chóp có cạnh bên vuông góc với mặt đáy + Dạng 3. Thể tích hình chóp có mặt bên vuống góc với mặt đáy + Dạng 4. Thể tích hình chóp có các cạnh bên bằng nhau + Dạng 5. Hình chóp có các mặt bên (hoặc cạnh bên) đôi một vuông góc + Dạng 6. Tỉ số thể tích (Simson) + Dạng 7. Thể tích “nơtrino” Lăng trụ + Dạng 1. Thể tích lăng trụ đều, đứng + Dạng 2. Thể tích lăng trụ xiên Phần 3. Phương pháp đặt trục tọa độ
Chuyên đề phương pháp tọa độ trong không gian - Trần Văn Tài
Tài liệu gồm 187 trang phân dạng và hướng dẫn giải các dạng toán chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết. Các dạng toán gồm: + Dạng toán 1. Các vấn đề cơ bản về hệ trục tọa độ Oxyz + Dạng toán 2. Phương trình mặt phẳng + Dạng toán 3. Phương trình đường thẳng và bài toán liên quan + Dạng toán 4. Phương trình mặt cầu và bài toán liên quan + Dạng toán 5. Tìm điểm, khoảng cách, góc và vị trị tương đối + Một số câu hỏi luyện tập tổng hợp. [ads]