Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chứng minh tứ giác nội tiếp đường tròn

Tài liệu gồm 19 trang, hướng dẫn phương pháp giải bài toán chứng minh tứ giác nội tiếp đường tròn, đây là dạng toán thường gặp trong chương trình Toán 9 và trong các đề tuyển sinh vào lớp 10 môn Toán. 1. Kiến thức cơ bản : Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên một đường tròn. Đường tròn đó được gọi là đường tròn ngoại tiếp tứ giác. 2. Các phương pháp chứng minh tứ giác nội tiếp đường tròn : + Phương pháp 1: Chứng minh bốn đỉnh của tứ giác cùng cách đều một điểm. + Phương pháp 2: Chứng minh tứ giác có hai góc đối diện bù nhau (tổng hai góc đối diện bằng 180 độ). + Phương pháp 3: Chứng minh hai đỉnh cùng nhìn đoạn thẳng tạo bởi hai điểm còn lại hai góc bằng nhau. Các bài toán trong tài liệu được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Trích dẫn tài liệu chứng minh tứ giác nội tiếp đường tròn: + Cho hình thang ABCD (AB CD AB CD) có 0 C D 60 CD AD 2. Chứng minh bốn điểm A B C D cùng thuộc một đường tròn. Hướng dẫn giải: Gọi I là trung điểm CD, ta có IC AB ICBA IC AB là hình hành BC AI (1). Tương tự AD BI (2). ABCD là hình thang có 0 C D 60 nên ABCD là hình thang cân (3). Từ (1), (2), (3) ta có hai tam giác ICB IAD đều hay IA IB IC ID hay bốn điểm A B C D cùng thuộc một đường tròn. + Cho hình thoi ABCD. Gọi O là giao điểm hai đường chéo. M N R và S lần lượt là hình chiếu của O trên AB BC CD và DA. Chứng minh bốn điểm M N R và S cùng thuộc một đường tròn. Do ABCD là hình thoi nên O là trung điểm của AC BD AC BD là phân giác góc A B C D nên MAO SAO NCO PDO OM ON OP OS hay bốn điểm M N R và S cùng thuộc một đường tròn. + Cho tam giác ABC có các đường cao BH và CK. Chứng minh B K H C cùng nằm trên một đường tròn. Xác định tâm đường tròn đó. Hướng dẫn giải: Gọi I là trung điểm CB do CHB CKB vuông tại H K nên IC IB IK IH hay B K H C cùng nằm trên một đường tròn tâm I.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề căn bậc hai và căn bậc ba Nguyễn Thanh Tâm
Nội dung Chuyên đề căn bậc hai và căn bậc ba Nguyễn Thanh Tâm Bản PDF - Nội dung bài viết Chuyên đề căn bậc hai và căn bậc ba của thầy giáo Nguyễn Thanh Tâm Chuyên đề căn bậc hai và căn bậc ba của thầy giáo Nguyễn Thanh Tâm Bộ tài liệu này bao gồm tổng cộng 43 trang, được biên soạn bởi thầy giáo Nguyễn Thanh Tâm. Tronig tài liệu, thầy giáo phân loại và hướng dẫn giải các dạng bài toán liên quan đến căn bậc hai và căn bậc ba. Tài liệu này sẽ giúp bạn hiểu rõ hơn về các kiến thức cơ bản và nâng cao trong chuyên đề căn bậc hai và căn bậc ba. Với sự giảng dạy chi tiết, cụ thể của thầy giáo Nguyễn Thanh Tâm, bạn sẽ có cơ hội nắm vững những kiến thức quan trọng và áp dụng chúng vào việc giải các bài tập thực hành. Hãy tận dụng cơ hội học tập từ tài liệu này để cải thiện khả năng giải toán của mình và tự tin hơn khi đối mặt với các dạng bài toán căn bậc hai và căn bậc ba. Chúc bạn học tốt!
Chứng minh tứ giác nội tiếp đường tròn
Nội dung Chứng minh tứ giác nội tiếp đường tròn Bản PDF - Nội dung bài viết Chứng minh tứ giác nội tiếp đường tròn Chứng minh tứ giác nội tiếp đường tròn Tài liệu này gồm 19 trang, cung cấp hướng dẫn chi tiết về phương pháp giải bài toán chứng minh tứ giác nội tiếp đường tròn. Đây là một dạng bài toán phổ biến trong chương trình Toán lớp 9 và trong các bài tập thực hành.
Giải bài toán bằng cách lập phương trình hệ phương trình
Nội dung Giải bài toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Hướng dẫn giải bài toán bằng cách lập phương trình - hệ phương trình Hướng dẫn giải bài toán bằng cách lập phương trình - hệ phương trình Tài liệu này bao gồm 76 trang, dành cho học sinh lớp 9 để tham khảo khi học chương trình. Nó cung cấp phương pháp giải bài toán bằng cách lập phương trình - hệ phương trình, giúp học sinh hiểu rõ hơn về cách làm và giải quyết bài toán một cách chính xác. Với nội dung chi tiết và dễ hiểu, tài liệu này sẽ giúp học sinh tự tin hơn khi giải các bài toán liên quan đến phương trình và hệ phương trình.
Hàm số, đồ thị và sự tương giao Dương Minh Hùng
Nội dung Hàm số, đồ thị và sự tương giao Dương Minh Hùng Bản PDF - Nội dung bài viết Sản phẩm Hàm số, đồ thị và sự tương giao Dương Minh Hùng Sản phẩm Hàm số, đồ thị và sự tương giao Dương Minh Hùng Tài liệu này được sắp xếp thành 28 trang bởi thầy giáo Dương Minh Hùng, để giúp các học sinh lớp 9 hiểu rõ về chủ đề hàm số, đồ thị và sự tương giao trong môn Toán. Tài liệu bao gồm: A. Tóm tắt lý thuyết I. Hàm số bậc nhất: Khái niệm hàm số bậc nhất và các tính chất. Đồ thị của hàm số y = ax + b (a khác 0) và cách vẽ đồ thị. Vị trí tương đối của hai đường thẳng. Hệ số góc của đường thẳng y = ax + b. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai: Khái niệm hàm số bậc hai và các tính chất. Đồ thị của hàm số y = ax2 (a khác 0) và cách vẽ đồ thị. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác 0). B. Phân dạng toán cơ bản 1. Dạng Toán lớp 1: Vẽ đồ thị hàm số. 2. Dạng Toán lớp 2: Tìm tọa độ giao điểm của đường thẳng và Parabol. 3. Dạng Toán lớp 3: Tìm phương trình đường thẳng, phương trình Parabol. 4. Dạng Toán lớp 4: Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện Tài liệu này cung cấp các bài tập rèn luyện để học sinh có cơ hội luyện tập và áp dụng kiến thức đã học. Qua tài liệu này, học sinh sẽ được hướng dẫn chi tiết và dễ hiểu về hàm số, đồ thị và sự tương giao trong môn Toán, từ đó có thể áp dụng vào việc ôn thi và nâng cao kiến thức môn Toán của mình.