Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT TP Cao Lãnh Đồng Tháp

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT TP Cao Lãnh Đồng Tháp Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT TP Cao Lãnh - Đồng Tháp Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT TP Cao Lãnh - Đồng Tháp Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Cao Lãnh, tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 18 tháng 12 năm 2022. Trích dẫn phần nội dung của đề thi: Nhân dịp ngày siêu khuyến mãi 12.12.2022, một siêu thị tại Cao Lãnh đã giảm giá lô hàng tivi từ giá niêm yết 7.400.000 đồng/cái. Sau khi giảm 10% so với giá niêm yết, siêu thị bán được 10 cái tivi. Tiếp theo, sau khi giảm thêm 5% (so với giá giảm lần 1) siêu thị bán được 15 cái nữa. Cuối cùng, sau khi bán hết 25 cái tivi, siêu thị lời được 11.505.000 đồng. Hỏi giá vốn của một cái tivi là bao nhiêu tiền? Cho a và b là hai số thực phân biệt thỏa mãn \(a^4 + b^4 = 4\). Chứng minh rằng \(ab \leq 2\). Cho hình vuông ABCD có tâm O và cạnh bằng 6 cm, điểm M nằm trên cạnh BC. a) Khi BM = 2 cm, hạ OK vuông góc với AM tại K. Tính độ dài đoạn OK. b) Khi M thay đổi trên BC, N thay đổi trên CD sao cho \(\angle MAN = 45^{\circ}\) là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định. Đây là một đề thi thú vị và đầy thử thách. Chúc các em học sinh lớp 9 thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 9 lần 1 năm 2022 - 2023 trường THCS Nguyễn Hồng Lễ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội dự tuyển học sinh giỏi cấp tỉnh môn Toán 9 lần 1 năm học 2022 – 2023 trường THCS Nguyễn Hồng Lễ, thành phố Sầm Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2022.
Đề học sinh giỏi cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.