Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán THCS năm 2022 2023 phòng GD ĐT Buôn Ma Thuột Đắk Lắk

Nội dung Đề thi HSG Toán THCS năm 2022 2023 phòng GD ĐT Buôn Ma Thuột Đắk Lắk Bản PDF - Nội dung bài viết Đề thi HSG Toán THCS năm 2022 - 2023 phòng GD&ĐT Buôn Ma Thuột - Đắk Lắk Đề thi HSG Toán THCS năm 2022 - 2023 phòng GD&ĐT Buôn Ma Thuột - Đắk Lắk Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán bậc THCS năm học 2022-2023 của phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk. Kỳ thi sẽ diễn ra vào ngày 02 tháng 03 năm 2023. Trích đề thi: + Đề 1: Biển Chết là hồ nước mặn nhất trên Trái Đất với độ mặn cao gấp 9,6 lần so với nước biển thường. Thầy Phương lấy 500g nước biển Chết, 400g nước biển thường và thêm 10 lít nước ngọt vào thùng. Hỏi nước trong thùng có thể là nước lợ hay không? + Đề 2: Gen B có 3600 liên kết Hiđro và số Nucleotit loại T lớn hơn số Nucleotit không bổ sung là 300 Nucleotit. Tính số Nucleotit từng loại của gen B. + Đề 3: Cho hình vuông ABCD có cạnh a. N là điểm thuộc cạnh AB, E là giao điểm của CN và DA, F là giao điểm của tia Cx và AB, M là trung điểm của EF. Hãy chứng minh điều kiện và tính toán vị trí của N trên AB thỏa mãn điều kiện diện tích tứ giác ACFE gấp 3 lần diện tích hình vuông ABCD. Đề thi năm nay hứa hẹn mang đến những thách thức và giải pháp thú vị cho các em học sinh, giúp họ rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Nguyễn Du - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Du, thành phố Đà Lạt, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 21 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Nguyễn Du – Lâm Đồng : + Bạn An mua một số quyển vở và bút máy hết tất cả là 102 nghìn đồng. Biết giá mỗi quyển vở là 12 nghìn đồng, giá mỗi cây bút là 10 nghìn đồng. Hỏi bạn An mua được bao nhiêu quyển vở và bao nhiêu cây bút? + Định mức giá điện sinh hoạt năm 2021 như sau: Số điện (kWh) Giá bán điện (đồng/kWh) Bậc 1: Từ 0 – 50 kWh 1.678 Bậc 2: Từ 51 – 100 kWh 1.734 Bậc 3: Từ 101 – 200 kWh 2.014 Bậc 4: Từ 201 – 300 kWh 2.536 Bậc 5: Từ 301 – 400 kWh 2.834 Bậc 6: Từ 401 kWh trở lên 2.927. Tiền điện được tính theo bậc, với thuế giá trị gia tăng (GTGT) 10%. a) Trong tháng 6/2021, nhà bạn Xuân sử dụng hết 230 kWh điện. Tính tiền điện nhà bạn Xuân phải trả. b) Cũng trong tháng đó, nhà bác Hạ đã phải trả 548 680 đồng tiền điện. Hỏi nhà bác Hạ đã sử dụng hết bao nhiêu kWh điện? + Từ tấm nhôm hình vuông cạnh 6 dm. Người ta muốn cắt một hình thang (phần tô đậm trong hình vẽ). Tìm tổng x y để diện tích hình thang cắt được nhỏ nhất.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 10 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Cho a, b là các số nguyên thỏa mãn a2 + 2b + 3 và b2 + 2a + 3 đều chia hết cho 5. Chứng minh a + b + 2023 chia hết cho 5. + Cho tam giác ABC nhọn, cân tại A, đường cao AM. Đường thẳng qua B và vuông góc với AB, cắt tia AM tại D. Lấy điểm F bất kì nằm giữa hai điểm B và M. Gọi E là hình chiếu vuông góc của A trên đường thẳng DF. 1) Chứng minh DE.DF = DM.DA và DBF = DEB. 2) Gọi O là trung điểm của AD. Đường thẳng qua O và vuông góc với EC, cắt EA tại S. Chúng minh tam giác EBF đồng dạng với tam giác SOE. 3) Gọi K là trung điểm của EF. Chứng minh CK vuông góc với SD. + Cho bảng ô vuông n x n. Ta tiến hành điền vào mỗi ô vuông 1 × 1 của bảng một số nguyên (các số được điền không nhất thiết phân biệt) thỏa mãn tổng các số trong mỗi mảng ô vuông 3 × 3 luôn dương, đồng thời tổng các số trong mỗi mảng ô vuông 4 × 4 luôn âm. a) Chỉ ra một cách điền số thỏa mãn với n = 5. b) Tìm điều kiện của n để tồn tại một cách điền số thỏa mãn.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Nghi Xuân - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghi Xuân, tỉnh Hà Tĩnh. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Nghi Xuân – Hà Tĩnh : + Viết số 2023^2023 thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu? + Tam giác ABC cân tại A, biết AB = 2cm và góc A bằng 36°. Tính BC. + Cho tam giác nhọn ABC (AB < AC). Ba đường cao AD, BE và CF cắt nhau tại H. Gọi I là giao điểm EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a. Chứng minh: AEF đồng dạng ABC. b.Chứng minh: IP = IQ. c. Gọi M là trung điểm của AH, chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Ba Vì – Hà Nội : + Cho tam giác ABC cân tại A có ABC = 𝛼. Gọi I là trung điểm của BC. Trên cạnh AB, AC lấy M, N sao cho MIN = 𝛼. Chứng minh rằng: a) Tam giác BMI đồng dạng với tam giác CIN. Từ đó suy ra BM.CN không đổi. b) NI là tia phân giác của MNC. + Cho tam giác ABC vuông tại A, điểm M nằm giữa B và C. Gọi D, E thứ tự là hình chiếu của M trên AC, AB a) Tìm vị trí của M để DE có độ dài nhỏ nhất. b) Tam giác ABC có thêm điều kiện gì để với mọi vị trí của M nằm giữa B và C thì các hình chữ nhật ADME có chu vi bằng nhau. + Cho a, b là các số nguyên, chứng minh rằng: 42 24 Q a b a b ab ab chia hết cho 6.