Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Đắk Lắk

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi thầy giáo Nguyễn Hải Dương – giáo viên Toán trường THCS Phan Chu Trinh, thành phố Buôn Ma Thuột, tỉnh Đắk Lắk). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Bạn An đến cửa hàng sách mua 1 cuốn sách tham khảo Toán và 1 cuốn sách thamkhảo Ngữ Văn để ôn thi tuyển sinh vào lớp 10 trung học phổ thông năm học 2022-2023. Khi đến mua hàng thì giá tiền cùa cuốn sách Toán cần mua giảm 20% và cuốn sách Ngữ Văn cần mua tăng 15% so với giá niêm yết của cửa hàng. Vi vậy, bạn An thanh toán tổng cộng là 233000 đồng khi mua hai cuốn sách trên. Biểt rằng theo giá niêm yết, tổng giá tiền của 2 cuốn sách Ngữ Văn nhiều hơn tổng giá tiền cùa 3 cuốn sách Toán là 10000 đồng (hai cuồn sách Ngữ Văn giống nhau; ba cuốn sách Toán giống nhau). Hỏi giá niêm yết của cuốn sách tham khảo Toán và cuốn sách tham khảo Ngữ Văn trên là hao nhiêu? + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O;R). Hai đường cao BM, CN của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác AMHN nội tiếp. 2) Đường thẳng AH cắt BC tại D và cắt đường tròn (O;R) tại điểm thứ hai tại P. Chứng minh BC là tia phân giác của MBP. 3) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMHN. Chứng minh IM là tiếp tuyến của đường tròn ngoại tiếp tam giác BCM. 4) Gọi F là giao điềm của IM và AB. Chứng minh 2 FM FN FB. + Cho parabol 2 y x có đồ thị P và đường thẳng d y x m 2 2 với m là tham số. Tìm giá trị của tham số m để đường thẳng d cắt P tại hai điểm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Theo các chuyên gia về sức khỏe, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khỏe. Để rèn luyện sức khỏe, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước. Hai người cùng đi bộ ở công viên và thấy rằng, nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bươc tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Cho phương trình: 2 2 x m x m m 2 1 4 7 0 (m là tham số). a) Tìm m để phương trình đã cho có nghiệm. b) Tìm m để phương trình đã cho có hai nghiệm âm phân biệt. + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O. Hai tiếp tuyến tại B và C của đường tròn O cắt nhau tại M, tia AM cắt đường tròn O tại điểm D. a) Chứng minh rằng tứ giác OBMC nội tiếp được đường tròn. b) Chứng minh 2 MB MD MA. c) Gọi E là trung điểm của đoạn thẳng AD; tia CE cắt đường tròn O tại điểm F. Chứng minh rằng: BF AM.
Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán cơ sở năm học 2021 – 2022 sở GD&ĐT Đồng Tháp; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán cơ sở năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Theo kế hoạch, một tổ trong xưởng may phải may xong 8400 chiếc khẩu trang trong một thời gian quy định. Do tình hình dịch bệnh Covid-19 diễn biến phức tạp, tổ đã quyết định tăng năng suất nên mỗi ngày tổ đã may được nhiều hơn 102 chiếc khẩu trang so với số khẩu trang phải may trong một ngày theo kế hoạch. Vì vậy, trước thời gian quy định 4 ngày, tổ đã may được 6416 chiếc khẩu trang. Hỏi số khẩu trang mà tổ phải may mỗi ngày theo kế hoạch là bao nhiêu? + Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài BC và đường cao AH. + Cho đường tròn (O). Từ một điểm M ở ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là hai tiếp điểm). a) Chứng minh MACB là tứ giác nội tiếp. b) Vẽ đường kính BK của đường tròn (O), H là điểm trên BK sao cho AH vuông góc BK. Điểm I là giao điểm của AH, MK. Chứng minh I là trung điểm của HA.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Hùng Vương - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm học 2021 – 2022 trường THPT chuyên Hùng Vương – Gia Lai. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Hùng Vương – Gia Lai : + Cho đa thức f(x) = ax2 + bx + c (a khác 0). Tìm a, b, c biết f(x) – 2020 chia hết cho x – 1, f(x) + 2021 chia hết cho x + 1 và f(x) nhận giá trị bằng 2 khi x = 0. + Cho đường tròn (O) có đường kính AB cố định, I là một điểm thuộc đoạn OA (I khác O), qua I kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại hai điểm phân biệt M và N. Gọi C là điểm thuộc cung lớn MN và E là giao điểm của AC với MN. a) Chứng minh tứ giác EIBC nội tiếp một đường tròn. b) Chứng minh AE.AC = AM2 và AE.AC – AI.IB = AI2. c) Gọi H, K, P lần lượt là hình chiếu của C lên đường thẳng BM, MN và BN. Xác định vị trí điểm C trên đường tròn (O) sao cho độ dài đoạn thẳng HK lớn nhất. + Cho hai số thực x, y không âm thỏa mãn x + y = 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = (5×2 + 7y)(5y2 + 7x) + 151xy.
Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng : + Một người dự định đi xe gắn máy từ A đến B với vận tốc không đổi. Nhưng thực tế vì có việc gấp, người đó đã tăng vận tốc thêm 5 km/h so với dự định nên đến B sớm hơn 15 phút. Tính vận tốc người đó dự định đi từ A đến B, biết quãng đường AB dài 70km. + Cho C là một điểm nằm trên nửa đường tròn tâm O đường kính AB (C khác A, C khác B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C, I là trung điểm của CH, J là trung điểm của DH và E là giao điểm của HD và BI. Chứng minh: HE.HD = HC2. + Hình nón có thể tích là 960 cm3 và chiều cao là 8 cm. Tính diện tích xung quanh của hình nón.