Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi gồm 05 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 111. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Bác Ba có một mảnh đất rộng 6 ha. Bác dự tính trồng cà chua và ngô cho mùa vụ sắp tới. Nếu trồng ngô thì bác Ba cần 10 ngày để trồng một ha. Nếu trồng cà chua thì bác Ba cần 20 ngày để trồng một ha. Biết rằng mỗi ha ngô sau thu hoạch bán được 30 triệu đồng, mỗi ha cà chua sau thu hoạch bán được 50 triệu đồng và bác Ba chỉ còn 100 ngày để canh tác cho kịp mùa vụ. Số tiền nhiều nhất mà bác Ba có thể thu được sau mùa vụ này là? + Một phòng đọc sách của thư viện trường THPT B có diện tích mặt sàn là 2 80m. Nhà trường dự kiến kê một số bàn ghế, biết rằng diện tích để kê một chiếc ghế là 2 0,5m một chiếc bàn là 2 1,0m. Gọi x là số ghế, y là số bàn được kê. Biết diện tích mặt sàn dành cho lối lưu thông tối thiểu là 2 20m. Khi đó bất phương trình bậc nhất hai ẩn x y cho phần mặt sàn để kê bàn và ghế sẽ là? + Trong kỳ thi Tốt nghiệp trung học phổ thông năm 2023, ở trường THPT A kết quả số thí sinh đạt danh hiệu xuất sắc như sau: môn Toán có 48 thí sinh; môn Vật lý có 37 thí sinh; môn Văn có 42 thí sinh; môn Toán hoặc môn Vật lý có 75 thí sinh; môn Toán hoặc môn Văn có 76 thí sinh; môn Vật lý hoặc môn Văn có 66 thí sinh; xuất sắc cả 3 môn Toán, Vật lý, Văn có 4 thí sinh. Số thí sinh đạt danh hiệu xuất sắc chỉ một môn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 – 2018 sở GD và ĐT Hải Dương gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, nội dung đề gồm các phần: hàm số và đồ thị, phương trình – bất phương trình – hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng, bài toán tối ưu, min – max, kỳ thi được diễn ra vào ngày 04/04/2018, đề thi HSG Toán 10 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 : + Cho tam giác ABC có AB = 6, BC = 7, CA = 5. Gọi M là điểm thuộc cạnh AB sao cho AM = 2MB và N là điểm thuộc AC sao cho vtAN = k.vtAC (k ∈ R). Tìm k sao cho đường thẳng CM vuông góc với đường thẳng BN. + Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết phương trình đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2,1). Tìm toạ độ các đỉnh của hình chữ nhật. [ads] + Một xưởng sản xuất có hai máy, sản xuất ra hai loại sản phẩm I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Để sản xuất 1 tấn sản phẩm loại I cần máy thứ nhất làm việc trong 3 giờ và máy thứ hai làm việc trong 1 giờ. Để sản xuất 1 tấn sản phẩm loại II cần máy thứ nhất làm việc trong 1 giờ và máy thứ hai làm việc trong 1 giờ. Mỗi máy không đồng thời làm hai loại sản phẩm cùng lúc. Một ngày máy thứ nhất làm việc không quá 6 giờ, máy thứ hai làm việc không quá 4 giờ. Hỏi một ngày nên sản xuất bao nhiêu tấn mỗi loại sản phẩm để tiền lãi lớn nhất?
Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.