Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kỳ 1 Toán 11 năm 2023 - 2024 sở GDĐT Kiên Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 001 002 003 004. Trích dẫn Đề kiểm tra cuối học kỳ 1 Toán 11 năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Cho hình vuông cạnh 1024 cm. Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (tham khảo hình vẽ). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi 1 u 2 u 3 u … lần lượt là độ dài cạnh của các hình vuông được tô màu. Tính 8 u. + Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40 bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số 3sin 80 12 182 d t với t 0 365 t. Vào ngày nào trong năm thì thành phố A có ít giờ có ánh sáng mặt trời nhất? (tham khảo bảng sau cho biết số ngày của mỗi tháng trong năm không nhuận). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của cạnh SB. a) Chứng minh rằng đường thẳng OM song song với mặt phẳng SAB. b) Gọi G là trọng tâm của tam giác SCD và H là giao điểm của đường thẳng OG với mặt phẳng SAD. Chứng minh rằng đường thẳng SH song song với đường thẳng AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Quốc Trí TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Quốc Trí TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Quốc Trí, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Trương Vĩnh Ký TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Trương Vĩnh Ký TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường Trương Vĩnh Ký, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Linh Trung TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Linh Trung TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Linh Trung, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Linh Trung – TP HCM : + Một nhóm học sinh gồm 12 bạn nam trong đó có Khoa và 5 bạn nữ trong đó có Linh, được xếp vào 17 ghế thành một hàng ngang. Tính xác suất để không có bạn nữ nào ngồi cạnh nhau và giữa hai bạn nữ có đúng 3 bạn nam ngồi cạnh nhau, đồng thời Khoa và Linh không ngồi cạnh nhau. + Một vận động viên điền kinh sau khi phẫu thuật đầu gối được theo một lớp huấn luyện chương trình chạy bộ từ từ, chương trình này quy định thời gian chạy của mỗi ngày trong một tuần là như nhau: trong tuần đầu tiên vận động viên đó chỉ được chạy bộ 10 phút mỗi ngày. Cứ sau mỗi tuần, vận động viên đó được tăng thời gian chạy lên 5 phút mỗi ngày. Hỏi phải đến tuần thứ mấy thì vận động viên đó chạy bộ được 60 phút mỗi ngày? + Tìm số hạng chứa x6 trong khai triển (x4 + 1/x2)^12 với x khác 0.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Du – TP HCM : + Đoàn trường THPT Nguyễn Du có 14 đoàn viên ưu tú, trong đó có 6 đoàn viên nam và 8 đoàn viên nữ. Hãy cho biết đoàn trường có bao nhiêu cách chọn ra 6 đoàn viên đi dự hội trại sao cho có ít nhất hai đoàn viên nữ và hai đoàn viên nam. + Trong giờ học môn giáo dục quốc phòng tại trường THPT Nguyễn Du, thầy giáo yêu cầu ba học sinh A1, A2, A3 độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của ba em học sinh A1, A2, A3 tương ứng là 0,7; 0,6 và 0,5. Tính xác suất để có ít nhất một em học sinh bắn trúng mục tiêu. + Cho tứ diện ABCD. Gọi M là điểm nằm trên cạnh BC sao cho BM = 2MC, N là trung điểm của BD và G là trọng tâm của tam giác ABD. a) Tìm giao tuyến của cặp mặt phẳng (AMN) và (ACD). b) Chứng minh đường thẳng MG song song với mặt phẳng (ACD).