Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 năm 2019 - 2020 phòng GDĐT Buôn Ma Thuột - Đắk Lắk

Thứ Năm ngày 09 tháng 01 năm 2020, phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi môn Toán 9 THCS cấp thành phố năm học 2019 – 2020. Đề thi HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk gồm có 01 trang với 05 bài toán tự luận, học sinh có 150 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk : + Đa thức P(x) chia cho (x – 1) được số dư bằng 4, chia cho (x – 3) được số dư bằng 14. Tìm số dư của phép chia P(x) cho (x – 1)(x – 3). + Cho hàm số y = (m + 2)x + m – 1. a) Tìm điều kiện của m để hàm số nghịch biến trên tập số thực. b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3. [ads] c) Tìm m để đồ thị của các hàm số y = -x + 2; y = 2x – 1 và y = (m – 2)x + m – 1 đồng quy. d) Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2. + Cho hình vuông ABCD có cạnh a. Điểm M di động trên đường chéo AC. Kẻ ME vuông góc với AB, MF vuông góc với BC (E thuộc AB, F thuộc BC). Xác định vị trí của điểm M để diện tích tam giác DEF đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 tháng 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GD&ĐT Chí Linh – Hải Dương : + Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). + Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. + Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. a) Tính DE3/BD.CE theo R. b) Tính: AI/HB + AI/HC. c) Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất.
Đề khảo sát đội tuyển HSG Toán 9 năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 09 năm 2022. Trích dẫn đề khảo sát đội tuyển HSG Toán 9 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). + Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Điểm C di động trên nửa đường tròn(C khác A và B). Kẻ CH vuông góc AB (H thuộc AB). Tia phân giác của các góc CAB và CBA cắt nhau tại I và cắt các cạnh đối diện lần lượt tại E và F. Tia phân giác của góc CHA cắt AE tại J, tia phân giác của góc CHB cắt BF tại K. Đường thẳng JK cắt CA, CB lần lượt tại M, N. 1. Chứng minh tam giác HJK đồng dạng tam giác CAB. 2. Chứng minh: CI = JK. 3. Xác định vị trí của C trên nửa đường tròn để JK có độ dài lớn nhất.
Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán cấp quận năm 2022 – 2023 phòng GD&ĐT Đống Đa – Hà Nội : + Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Tìm n là số tự nhiên sao cho 2^n – 1 chia hết cho 7. + Trên bảng viết 100 phân số. Ta thực hiện trò chơi như sau: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, nhưng lại viết thêm số (a − b + ab). Sau một số lần thực hiện quy tắc trên thì trên bảng còn lại đúng một số, chứng minh rằng đó là số tự nhiên.
Đề HSG Toán 9 vòng 1 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – TT Huế : + Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m3 = 2p3, n3 = 5q3. Chứng minh rằng tổng m + n + p + q là một hợp số. + Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A’B’C’ có đường phân giác A’D’. Chứng minh rằng ABC đồng dạng A’B’C’. + Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD.