Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tọa độ hóa hình không gian

Tài liệu gồm 51 trang hướng dẫn sử dụng phương pháp tọa độ hóa để giải bài toán hình học không gian cổ điển, tài liệu được biên soạn bởi nhóm tác giả Tạp chí và Tư liệu Toán học. Khái quát tài liệu phương pháp tọa độ hóa hình không gian : Đôi khi trong giải toán hình học không gian cổ điển ta sẽ gặp khá nhiều bài toán tính toán phức tạp, tuy nhiên trong phòng thi ta lại không có nhiều thời gian, vì thế trong chương này chúng ta sẽ tìm hiểu một phương pháp giải quyết nhanh các bài toán tính toán phức tạp và khó trong hình không gian cổ điển, liên quan tới cực trị, góc, khoảng cách. I. Ý TƯỞNG . PHƯƠNG PHÁP: Trên mạng có một vài tài liệu nói về phương pháp này và chia thành rất nhiều dạng, điều đó làm chúng ta khi áp dụng có phần khó nhớ và máy móc, tuy nhiên chúng ta chỉ cần nắm được dấu hiệu và phương pháp sau: + Bước 1 . Chọn hệ trục tọa độ. Trong bước này ta sẽ xác định 3 đường vuông góc có trong bài toán và gọi đó là 3 đường cơ sở. Thông thường thì ta sẽ quy ước trục Ox hướng vào mình, trục Oz nằm ngang, còn lại là trục Oy. [ads] + Bước 2 . Xác định tọa độ các điểm liên trên hình liên quan tới bài toán. Với những bạn chưa quen thì chúng ta xác định tọa độ hình chiếu của điểm cần tìm lên các trục, từ đó sẽ suy ra được tọa độ điểm cần tính. + Bước 3 . Áp dụng công thức. Sau đây chúng ta sẽ nhắc lại một số công thức cần nhớ trong phần này: + Diện tích và thể tích: Diện tích tam giác, Thể tích tứ diện, Thể tích hình hộp, Thể tích hình lăng trụ. + Góc: Góc giữa 2 mặt phẳng, Góc giữa 2 đường thẳng, Góc giữa đường thẳng và mặt phẳng. + Khoảng cách:  Khoảng cách từ điểm đến mặt phẳng, Khoảng cách từ một điểm đến 1 đường thẳng, Khoảng cách giữa hai đường thẳng chéo nhau. Chú ý . Thông thường các bài mà không có 3 đường vuông góc thì ta sẽ phải tự dựng thêm để gắn tọa độ và những bài liên quan tới hình lập phương, hình hộp chữ nhật, chối chóp có 3 đường vuông góc, lăng trụ đứng thì khi áp dụng phương pháp này sẽ giải rất nhanh. II. CÁC BÀI TOÁN : Tuyển chọn 59 bài toán hình học không gian cổ điển được giải bằng phương pháp tọa độ hóa.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tọa độ của điểm và véctơ
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tọa độ của điểm và véctơ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. Hệ trục tọa độ trong không gian. II. Tọa độ vectơ. III. Tọa độ của điểm. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn cảnh hình học giải tích không gian trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 27 trang, tuyển chọn 274 câu hỏi và bài tập trắc nghiệm chuyên đề hình học giải tích trong không gian có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 1219 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán: + Trong không gian với hệ trục Oxyz, cho mặt cầu (S): (x + 2)2 + (y − 4)2 + (z − 1)2 = 99 và điểm M(1; 7; −8). Qua điểm M kẻ các tia Ma, Mb, Mc đôi một vuông góc nhau và cắt mặt cầu tại điểm thứ hai tương ứng là A, B, C. Biết rằng mặt phẳng (ABC) luôn đi qua một điểm cố định K(xk; yk; zk). Tính giá trị P = xk + 2yk − zk. + Trong không gian Oxyz, cho mặt cầu (S) : (x − 2)2 + (y − 4)2 + (z − 6)2 = 24 và điểm A(−2; 0; −2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω), kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω0). Biết rằng khi (ω) và (ω0) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2) và B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x2 + y2 + z2 − 4x + 2my − 2(m + 1)z + m2 + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1. + Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(1; 2; 1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (α). + Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y − 2z + 2018 = 0, (Q): x + my + (m − 1)z + 2017 = 0 (m là tham số thực). Khi hai mặt phẳng (P) và (Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q)?