Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2020 2021 trường THCS Ái Mộ Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2020 2021 trường THCS Ái Mộ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng Toán lớp 9 năm 2020 - 2021 trường THCS Ái Mộ Hà Nội Đề khảo sát chất lượng Toán lớp 9 năm 2020 - 2021 trường THCS Ái Mộ Hà Nội Chào mừng đến với đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 - 2021 của trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội. Đề thi bao gồm các câu hỏi được thiết kế kỹ lưỡng, kèm đáp án và lời giải chi tiết để giúp các em học sinh ôn tập và kiểm tra kiến thức của mình. Trích dẫn một số câu hỏi trong đề thi: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để ủng hộ các gia đình gặp khó khăn tại một số địa phương do ảnh hưởng của dịch Covid-19, một số tổ chức thiện nguyện đã dự định chở 180 tấn hàng chia đều bằng một số xe cùng loại. Lúc khởi hành, có 2 xe bị hỏng nên mỗi xe phải chở thêm 3 tấn so với dự định. Hỏi ban đầu có bao nhiêu xe tham gia chở hàng? Bán kính Trái Đất là 6370 km. Biết rằng 29% diện tích bề mặt trái đất không bị bao phủ bởi nước gồm núi, sa mạc, cao nguyên, đồng bằng và các địa hình khác. Tính diện tích bề mặt Trái Đất bị bao phủ bởi nước (làm tròn đến hai chữ số thập phân, lấy π = 3,14). Cho nửa đường tròn tâm O đường kính AB R 2 và C D là hai điểm di động trên nửa đường tròn sao cho C thuộc cung AD và COD = 60° (C AD B). Gọi M là giao điểm của tia AC và BD, N là giao điểm của AD và BC. Gọi H và I lần lượt là trung điểm của CD và MN. a) Chứng minh tứ giác CMDN nội tiếp. b) Kẻ AP CD BQ CD P Q CD. Chứng minh CP DQ và AP BQ R 3. c) Chứng minh rằng ba điểm H I và O thẳng hàng. Tìm giá trị lớn nhất của diện tích tam giác MCD theo R khi C D di chuyển trên nửa đường tròn thỏa mãn điều kiện đề bài. Chúc các em học sinh có kỳ thi thành công và đạt kết quả tốt. Hy vọng rằng đề thi này sẽ giúp các em củng cố kiến thức Toán một cách hiệu quả. Cảm ơn quý thầy cô và các em đã quan tâm và tham gia.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL đầu năm năm học 2017 - 2018 môn Toán 9 trường THCS Cẩm Vũ - Hải Dương
Đề khảo sát chất lượng đầu năm năm học 2017 – 2018 môn Toán 9 trường THCS Cẩm Vũ – Cẩm Giàng, Hải Dương gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Bạn Nam đi xe đạp từ nhà đến Thành phố Hải Dương với vận tốc trung bình 15km/h. Lúc về bạn đi với vận tốc 12km/h, nên thời gian đi ít hơn thời gian về 12 phút. Tính độ dài quãng đường từ nhà bạn Nam đến thành phố Hải Dương?
Đề KSCL Toán thi vào lớp 10 năm 2024 - 2025 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024. Trích dẫn Đề KSCL Toán thi vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) có phương trình: y = (a + 1)x + b. Xác định a và b biết đường thẳng (d) đi qua điểm A(1;-5) và có hệ số góc bằng 3. + Cho phương trình x2 – 2x + m – 1 = 0 với m là tham số. 1. Giải phương trình với m = -2. 2. Tìm các giá trị của tham số m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn. + Cho nửa đường tròn tâm O đường kính MN. Gọi A là điểm chính giữa cung MN, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn NE sao cho NF = ME. Gọi K là giao điểm của AO và NE. 1. Chứng minh rằng EMOK là tứ giác nội tiếp. 2. Chứng minh rằng tam giác AEF vuông cân. 3. Hai đường thẳng ME và OA cắt nhau tại D. Chứng minh rằng AK.ED = AD.EK.
Đề KSCL Toán vào lớp 10 vòng 2 năm 2024 - 2025 phòng GDĐT Hưng Hà - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông vòng 2 năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Hưng Hà, tỉnh Thái Bình. Trích dẫn Đề KSCL Toán vào lớp 10 vòng 2 năm 2024 – 2025 phòng GD&ĐT Hưng Hà – Thái Bình : + Một mảnh vườn hình chữ nhật, nếu chiều dài và chiều rộng đều tăng thêm 4m thì diện tích mảnh vườn tăng thêm 216m2. Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì diện tích mảnh vườn giảm 50m2. Tính chiều rộng và chiều dài của mảnh vườn ban đầu. + Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn S = y2 + 2x + 1 đạt giá trị nhỏ nhất. + Cho đường tròn (O;R) và đường kính AB. Bán kính OC vuông góc với AB, M là điểm bất kỳ trên cung nhỏ AC (M khác A và C), BM cắt AC tại H. Gọi K là hình chiếu vuông góc của H trên AB a) Chứng minh bốn điểm B, C, H, K cùng thuộc một đường tròn b) Chứng minh ACM = ACK c) Trên đoạn thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C d) Gọi đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi P là một điểm nằm trên d sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và AP.MB/MA = R. Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK.
Đề KSCL Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa.