Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc

Nội dung Đề khảo sát lớp 10 môn Toán chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc Bản PDF Nhằm giúp các em học sinh khối 10 của nhà trường ôn lại các kiến thức môn Toán đã học từ năm học trước, để có sự chuẩn bị tốt nhất cho năm học mới, trường THPT Liễn Sơn, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát kiến thức đầu năm Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán lớp 10 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm chiếm 3 điểm với 12 câu, phần tự luận chiếm 7 điểm với 5 câu, thời gian làm bài kiểm tra là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán lớp 10 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc : + Một đội xe phải chuyên chở 36 tấn hàng. Trước khi làm việc, đội xe đó được bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe? Biết rằng số hàng chở trên tất cả các xe có khối lượng bằng nhau. + Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A). a) Chứng minh: AD.AE = AC.AB. b) Chứng minh: Ba điểm B, F, D thẳng hàng và F là tâm đường tròn nội tiếp tam giác CDN. + Tam giác đều ABC có cạnh 10 cm nội tiếp trong đường tròn, thì bán kính đường tròn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL đội tuyển HSG Toán 10 năm 2018 - 2019 trường Yên Lạc 2 - Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 10 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 10 nằm trong đội tuyển học sinh giỏi Toán 10 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán 10 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán 10 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 10 bài toán, bao quát toàn diện các kiến thức Toán 10 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề KSCL đội tuyển HSG Toán 10 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho tam giác ABC đều cạnh 3a. Lấy các điểm M, N lần lượt trên các cạnh BC, CA sao cho BM = a, CN = 2a. Gọi P là điểm nằm trên cạnh AB sao cho AM vuông góc với PN. Tính độ dài PN theo a. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có BC = 2AB, phương trình đường trung tuyến xuất phát từ đỉnh B là d: x + y – 2 = 0. Biết góc ABC = 120 độ và A(3;1). Tìm tọa độ các đỉnh còn lại của tam giác. + Cho hàm số y = x^2 + 2mx – 3m và hàm số y = -2x + 3. Tìm m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt A và B sao cho AB = 4√5.
Đề KSCL đội tuyển HSG Toán 10 năm 2020 - 2021 trường Liễn Sơn - Vĩnh Phúc
Đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2020 – 2021 trường THPT Liễn Sơn, tỉnh Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL đội tuyển HSG Toán 10 năm 2020 – 2021 trường Liễn Sơn – Vĩnh Phúc : + Cho tam giác đều ABC. Điểm M thay đổi nằm trong đoạn AB (M khác A và B). Gọi H, K tương ứng là hình chiếu vuông góc của M trên các đoạn BC và AC; G là trọng tâm của tam giác MHK. Chứng minh rằng đường thẳng MG luôn đi qua một điểm cố định. + Cho phương trình. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm thực. + Tìm tất cả các giá trị của tham số m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn.
Đề KSCL HSG lần 2 Toán 10 năm 2023 - 2024 trường THPT Lê Xoay - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng học sinh giỏi lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT Lê Xoay, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 147 – 260 – 347 – 442 – 575 – 696. Trích dẫn Đề KSCL HSG lần 2 Toán 10 năm 2023 – 2024 trường THPT Lê Xoay – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a b là? + Trong kỳ thi tốt nghiệp phổ thông, ở một trường kết quả số thí sinh đạt danh hiệu xuất sắc như sau: Về môn Toán: 48 thí sinh; Về môn Vật lý: 37 thí sinh; Về môn Văn: 42 thí sinh; Về môn Toán hoặc môn Vật lý: 75 thí sinh; Về môn Toán hoặc môn Văn: 76 thí sinh; Về môn Vật lý hoặc môn Văn: 66 thí sinh; Về cả 3 môn: 4 thí sinh. Hỏi có bao nhiêu học sinh nhận được danh hiệu xuất sắc ít nhất một môn? + Trong mặt phẳng tọa độ Oxy cho điểm A(2;1). Lấy điểm B nằm trên trục hoành có hoành độ không âm và điểm C trên trục tung có tung độ dương sao cho tam giác ABC vuông tại A. Tìm toạ độ B C để tam giác ABC có diện tích lớn nhất.
Đề KSCL lần 1 năm học 2017 - 2018 môn Toán 10 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Đề KSCL lần 1 năm học 2017 – 2018 môn Toán 10 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Lớp 10A có 16 học sinh giỏi môn Toán, 15 học sinh giỏi môn Lý và 11 học sinh giỏi môn Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lý, 6 học sinh vừa giỏi Lý và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó chỉ có 11 học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp giỏi cả ba môn Toán, Lý, Hóa A. 4 B. 7 C. 8 D. 5 [ads] + Cho hàm số y = f(x) có tập xác định là [-3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số đồng biến trên khoảng (-3; 3) B. Hàm số đồng biến trên khoảng (-3; -1) và (1; 3) C. Hàm số đồng biến trên khoảng (-3; -1) và (1; 4) D. Hàm số nghịch biến trên khoảng (-1; 0) + Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai? A. ABC là tam giác đều ⇔ Tam giác ABC cân và có một góc 60 độ B. ABC là tam giác đều ⇔ Tam giác ABC có hai góc bằng 60 độ C. ABC là tam giác đều ⇔ Tam giác ABC cân D. ABC là tam giác đều ⇔ ABC là tam giác có ba cạnh bằng nhau