Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 lần 2 năm 2018 - 2019 trường Hậu Lộc 1 - Thanh Hóa

giới thiệu đến thầy, cô và các em học sinh khối 12 đề thi KSCL Toán 12 lần 2 năm học 2018 – 2019 trường THPT Hậu Lộc 1 – Thanh Hóa, đây là đề thi thử THPT Quốc gia 2019 môn Toán để giúp học sinh thử sức trong quá trình chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019 dự kiến diễn ra vào cuối tháng 06 năm 2019. Đề thi KSCL Toán 12 lần 2 năm học 2018 – 2019 trường THPT Hậu Lộc 1 – Thanh Hóa gồm 4 mã đề, đề được biên soạn bám sát cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 mà Bộ Giáo dục và Đào tạo đã từng công bố, đề thi có đáp án đầy đủ các mã đề 152, 186, 220, 254. [ads] Trích dẫn đề thi KSCL Toán 12 lần 2 năm 2018 – 2019 trường Hậu Lộc 1 – Thanh Hóa : + Để đủ tiền mua nhà, anh An vay ngân hàng 500 triệu theo phương thức trả góp với lãi suất 0,85 % / tháng. Nếu sau mỗi tháng, kể từ thời điểm vay, anh An trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả tiền lãi vay và tiền gốc. Biết phương thức trả lãi và gốc không thay đổi trong suốt quá trình anh An trả nợ. Hỏi sau bao nhiêu tháng thì anh trả hết nợ ngân hàng? (tháng cuối có thể trả dưới 10 triệu đồng). + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là những số dương thay đổi thỏa mãn a^2 + 4b^2 + 16c^2 = 49. Tính tổng S = a^2 + b^2 + c^2 khi khoảng cách từ O đến mặt phẳng (ABC) đạt giá trị lớn nhất. + Cho tam giác đều ABC có đỉnh A(5;50 nội tiếp đường tròn tâm I đường kính AA’, M là trung điểm BC. Khi quay tam giác ABM cùng với nửa đường tròn đường kính AA’ xung quanh đường thẳng AM (như hình vẽ minh họa), ta được khối nón và khối cầu có thể tích lần lượt là V1 và V2. Tỷ số V1/V2 bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 môn Toán lần 3 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 3 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 3 trường chuyên Hạ Long – Quảng Ninh : + Trên tập số phức, xét phương trình (là tham số thực). Tổng các giá trị 2 2 z 2mz m m 8 0 m của m để phương trình đó có hai nghiệm phân biệt và hai điểm biểu diễn trên mặt phẳng phức 1 2 z z 1 2 z z cùng với gốc tọa độ tạo thành một tam giác có diện tích bằng là 3? + Cho hình trụ có tâm của hai đáy là và bán kính O O đáy bằng a, chiều cao bằng 2a. Hai điểm M N lần lượt nằm trên hai đường tròn đáy và sao cho (O) (O’) đường thẳng MN tạo với mặt phẳng đáy một góc 60. Khoảng cách từ tâm O đến mặt phẳng (MNO’) bằng? + Cho số phức z x yi (x y) thỏa mãn (là tham x my (mx y) i 2 5m (4m 3)i m số thực). Biết rằng khi thay m đổi, biểu thức P z 6 8i đạt giá trị lớn nhất có dạng a b (với là các a b số nguyên dương). Giá trị của a b bằng?
Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Nguyễn Trãi - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 2 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Nguyễn Trãi – Hải Dương : + Du lịch phát triển, nón lá cũng trở thành mặt hàng lưu niệm mang nét văn hoá đặc sắc được du khách ưa chuộng. Để làm quà cho các du khách tham gia tour du lịch của mình, công ty lữ hành đặt một cơ sở làm 1000 chiếc nón lá giống nhau có độ dài đường sinh là 30 cm. Ở phần mặt trước của mỗi chiếc nón (từ A đến B như hình vẽ), cơ sở thuê người sơn và vẽ hình trang trí. Biết AB cm20 3 và giá tiền công để sơn trang trí 2 1 m là 50000 đồng. Tính số tiền (làm tròn đến hàng nghìn) mà cơ sở đó phải trả để sơn trang trí cho cả đợt làm nón? + Một nam sinh viên muốn có một khoản tiền để mua một chiếc xe máy làm phương tiện đi làm sau khi ra trường. Bạn lên kế hoạch làm thêm và gửi tiết kiệm trong năm cuối đại học. Vào mỗi đầu tháng, bạn đều đặn gửi vào ngân hàng một khoản tiền T (đồng) theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết đến cuối tháng thứ 12 thì bạn đó có số tiền là 20 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau? + Cho hàm đa thức bậc ba y f x và hàm số y g x với đồ thị là Parabol đỉnh I như hình vẽ dưới đây. Biết rằng đồ thị của hai hàm số đã cho cắt nhau tại 3 điểm phân biệt có hoành độ 1 2 3x x x thoả mãn 1 2 3 x x 12. Khi đó diện tích hình phẳng giới hạn bởi các đường y f x y g x x 1 gần số nào nhất trong các số sau đây?
Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Nguyễn Trãi - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 1 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Nguyễn Trãi – Hải Dương : + Một ô tô chuyển động nhanh dần đều với vận tốc v t t 6 m s. Đi được 10 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc 2 a 60 m/s. Tính quãng đường S đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn. + Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y x đường thẳng y x 2 và trục tung. Khối tròn xoay tạo ra khi (H) quay quanh Ox có thể tích V bằng bao nhiêu? + Gọi S là tập hợp các số thực m sao cho với mỗi m S có đúng một số phức z thỏa mãn z m i 4 và 2 2 3 5 3 3 z z. Tính tích các phần tử của S.
Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT chuyên ĐH Vinh - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An; đề thi mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Sáu ngày 09 tháng 06 năm 2023; đề thi có đáp án mã đề 132 – 209 – 357 – 485. Trích dẫn đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT chuyên ĐH Vinh – Nghệ An : + Một bài thi đánh giá tư duy gồm 10 câu hỏi trắc nghiệm khách quan, trong đó có 5 câu hỏi về lĩnh vực tự nhiên và 5 câu hỏi về lĩnh vực xã hội. Mỗi câu hỏi có bốn phương án trả lời và chỉ có một phương án đúng. Một học sinh đã lời đúng các câu hỏi thuộc lĩnh vực tự nhiên, nhưng ở lĩnh vực xã hội học sinh đó lựa chọn ngẫu nhiên mỗi câu một phương án bất kì. Biết rằng, mỗi câu trả lời đúng được 1 điểm, trả lời sai không có điểm, tính xác suất để học sinh đó được ít nhất 8 điểm? + Trong không gian Oxyz, cho hình lập phương ABCD A B C D có A(0; 0; 0), B(3; 0; 0), D(0; 3; 0), A'(0; 0; 3). Mặt cầu S có phương trình dạng 2 2 2 x y z ax by cz d 2 2 2 0 tiếp xúc với hai đường thẳng B D và BC. Khi thể tích của khối cầu S đạt giá trị nhỏ nhất, giá trị của d bằng? + Gọi 1 2 M M lần lượt là biểu diễn hình học của các số phức 1 2 z i z i 1 1 2. Khi đó độ dài M M1 2 là? Số cách chọn 2 học sinh trong một lớp có 35 học sinh để bầu làm lớp trưởng và lớp phó học tập (mỗi học sinh nhận đúng một chức vụ) là?