Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp tỉnh năm học 2019 - 2020 sở GDĐT Quảng Nam

Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi chọn học sinh giỏi môn Toán khối lớp 9 năm học 2019 – 2020. Đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Cho nửa đường tròn tâm O, đường kính AB = 2a, H là điểm nằm trên đoạn thẳng OA sao cho HA = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa đường tròn đã cho tại C. Hạ HP vuông góc với AC tại P, HQ vuông góc với BC tại Q. a) Chứng minh OC vuông góc với PQ. b) Gọi I là giao điểm của OC và PQ. Tính độ dài đoạn thẳng CI theo a. c) Lấy điểm M trên tia đối của tia BA (M khác B), đường thẳng MC cắt nửa đường tròn đã cho tại điểm thứ hai là D. Hai đường tròn ngoại tiếp hai tam giác OAC và OBD cắt nhau tại điểm thứ hai là K, gọi E là giao điểm của AD và BC. Chứng minh bốn điểm A, B, E, K cùng nằm trên một đường tròn và KO vuông góc với KE. [ads] + Cho tam giác ABC vuông tại A có AC = 2AB, H là chân đường cao vẽ từ A của tam giác ABC, D là trung điểm của HC. a) Chứng minh tam giác ADH vuông cân. b) Gọi F là trung điểm AC, dựng hình vuông ABEF. Chứng minh tứ giác ABED nội tiếp trong đường tròn và tính diện tích tam giác ADE khi AB = 2 cm. + Cho phương trình x^2 – 3(m + 1)x + 2m^2 + 7m – 4 = 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt sao cho bình phương của một nghiệm bằng ba lần nghiệm còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 cấp quận năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp quận năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 11 năm 2023.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Đức Phổ - Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Đức Phổ, tỉnh Quảng Ngãi. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Đức Phổ – Quảng Ngãi : + Tìm hai số nguyên tố, sao cho tổng và hiệu của chúng đều là số nguyên tố. + Cho hình chữ nhật ABCD. Gọi M là trung điểm cạnh CD và N là một điểm trên đường chéo AC sao cho BNM = 90°. Gọi F là điểm đối xứng của A qua N. Chứng minh FB vuông góc với AC. + Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC (F thuộc BC). AF và BE cắt nhau tại O. a) Chứng minh AF = BE.cosC. b) Biết BC = 10cm, sinC = 0,6. Tính diện tích tứ giác ABFE. c) Tính sinAOB.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Đặng Thai Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Đặng Thai Mai, thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An : + Cho hai số nguyên dương a, b thỏa mãn a > b và a2 + b2 + 1 = 2(ab + a + b). Chứng minh a, b là hai số chính phương liên tiếp. + Cho tam giác nhọn ABC đường cao AH. Gọi E, F là các điểm lần lượt thuộc các tia HC, HB sao cho EAB = FAC = 90°. a) Chứng minh HB HF FB HC HE CE. b) Gọi P thuộc đoạn thẳng AH (P khác A; P khác H). Trên tia đối của tia PE lấy điểm M sao cho BM = BA. Trên tia đối của tia PF lấy N sao cho CN = CA. Qua C vẽ đường thẳng vuông góc với PF cắt đường thẳng AH tại K. Chứng minh BP vuông góc KE. c) Các đường thẳng BM, CN cắt nhau tại S. Chứng minh SM = SN. + Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Thạch Thất - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Thạch Thất – Hà Nội : + Cho điểm M di động trên đoạn thẳng AB M AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD, BMEF và giao điểm hai đường chéo mỗi hình vuông lần lượt là O, O’. Gọi H là giao điểm của AE và BC. 1/ Chứng minh rằng: AE BC. 2/ Gọi I là giao của AC và BE. Chứng minh I là trung điểm của đoạn thẳng DF và ba điểm H, D, F thẳng hàng. 3/ Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM2 = BM2 + CM2. Tính số đo góc BMC?