Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán KNTTVCS năm 2023 2024 trường THPT Lê Lợi Quảng Trị

Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán KNTTVCS năm 2023 2024 trường THPT Lê Lợi Quảng Trị Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán KNTTVCS năm 2023 2024 trường THPT Lê Lợi Quảng Trị Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán KNTTVCS năm 2023 2024 trường THPT Lê Lợi Quảng Trị Sytu trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề kiểm tra giữa học kỳ 1 môn Toán lớp 10 bộ sách Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS) năm học 2023 – 2024 trường THPT Lê Lợi, tỉnh Quảng Trị. Đề thi có đáp án trắc nghiệm mã đề 146 247 348 445. Trích dẫn Đề giữa kỳ 1 Toán lớp 10 KNTTVCS năm 2023 – 2024 trường THPT Lê Lợi – Quảng Trị: + Trong số 45 học sinh của lớp 10A, có 15 bạn được xếp loại học lực Tốt, 20 bạn được xếp loại hạnh kiểm Tốt, trong đó có 10 bạn vừa được học lực Tốt vừa được hạnh kiểm Tốt. Khi đó lớp 10A có bao nhiêu bạn chưa được xếp loại học lực Tốt và chưa có hạnh kiểm Tốt? + Giả sử chúng ta cần đo chiều cao AB của một tòa tháp với B là chân tháp và A là đỉnh tháp. Vì không thể đến chân tháp được, nên từ hai điểm C và D có khoảng cách CD là 32m sao cho ba điểm B, C, D thẳng hàng. Người ta đo các góc BCA là 46 độ và góc BDA là 70 độ. Hãy tính chiều cao AB của tòa tháp. (Kết quả các phép tính làm tròn đến chữ số thập phân thứ nhất.) + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; để pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng Bản PDF Thứ Tư ngày 04 tháng 11 năm 2020, trường THPT Trần Nguyên Hãn, quận Lê Chân, thành phố Hải Phòng tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn giữa học kỳ 1 năm học 2020 – 2021. Đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng mã đề 001 trang 04 trang với 20 câu trắc nghiệm và 04 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Phát biểu nào sau đây là mệnh đề? A. Đề trắc nghiệm môn Toán năm nay dễ quá trời! B. Cấm học sinh quay cóp trong kiểm tra. C. Bạn biết câu nào là đúng không? D. Toán học là một môn thi trong kỳ thi Tốt nghiệp trung học phổ thông Quốc Gia. + Trong lớp 10C2 có 16 học sinh giỏi môn Toán, 15 học sinh giỏi môn Lý và 11 học sinh giỏi môn Hóa. Biết rằng có 12 học sinh vừa giỏi Toán và Lý, 8 học sinh vừa giỏi Lý và Hóa, 9 học sinh vừa giỏi Hóa và Toán, trong đó chỉ có 11 học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp giỏi cả ba môn Toán, Lý, Hóa? + Cho hàm số f(x) = ax^2 + bx + c đồ thị như hình bên. Tìm tất cả các giá trị của tham số thực m để phương trình f(|x|) – 1 = m có đúng 3 nghiệm phân biệt. File WORD (dành cho quý thầy, cô):
Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Tây Hồ Hà Nội
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Tây Hồ Hà Nội Bản PDF Đề thi giữa học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Tây Hồ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 60 phút. Trích dẫn đề thi giữa học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Tây Hồ – Hà Nội : + Cho hai tập hợp A = {x thuộc R | x + 3 >= 0} và B = {x thuộc R | x – 2 < 0}. 1) Hãy viết các tập hợp trên theo khoảng, nửa khoảng và biểu diễn các tập trên trục số. 2) Hãy
Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM Bản PDF Thứ Năm ngày 29 tháng 10 năm 2020, trường THPT Nguyễn Công Trứ, thành phố Hồ Chí Minh tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn giữa học kỳ 1 năm học 2020 – 2021. Đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 60 phút. Trích dẫn đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Cho mệnh đề: “Với mọi n thuộc N thì n^2 > 2” (1). Hãy xét tính đúng – sai (có giải thích) của mệnh đề (1) và lập mệnh đề phủ định của mệnh đề (1). + Cho mệnh đề: “Nếu ABCD là hình bình hành thì AB = DC”. Phát biểu mệnh đề đảo của mệnh đề trên và nêu tính đúng – sai của mệnh đề đảo này. + Cho tam giác ABC vuông cân tại đỉnh A, có AB = 4. Gọi I là điểm thỏa AI = 3/4.AB và E là trung điểm AC. a) Tính IE theo hai véctơ AB và AC. b) Điểm M thỏa 3MA – 2MB + MC = BA. Chứng minh MA song song với BC. c) Tính |EA + 3EB|.
Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Hà Nội Amsterdam
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Hà Nội Amsterdam Bản PDF Thứ Tư ngày 28 tháng 10 năm 2020, trường THPT chuyên Hà Nội – Amsterdam tổ chức kỳ thi kiểm tra chất lượng giữa học kì 1 môn Toán lớp 10 chuyên năm học 2020 – 2021. Đề thi giữa HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 03 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi giữa HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Cho tam giác ABC. Gọi D, I là các điểm xác định bởi các hệ thức sau: 3DB – 2DC = 0, IA + 3IB – 2IC = 0. a) Chứng minh các điểm A, I, D thẳng hàng. b) Tìm tập hợp các điểm M thỏa mãn |MA + 3MB – 2MC| = |2MA – MB – MC|. c) Gọi E và F lần lượt là các điểm thuộc tia AB, AC thỏa mãn điều kiện: AB = (2k + 1)AE; AC = (k – 2)AF (k > 2). Chứng minh đường thẳng EF luôn đi qua một điểm cố định khi k thay đổi (k > 2). + Cho ánh xạ f: A → B trong đó A = {1; 2; 3; 4} và B = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}. a) Tính số ánh xạ f thỏa mãn điều kiện: f là đơn ánh và f(1) < f(2) < f(3) < f(4). b) Tính số ánh xạ f thỏa mãn |f(i) – f(j)| > 1 với mọi i, j thuộc A, i khác j.