Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện thi trắc nghiệm THPT Quốc Gia môn Toán

Nội dung Ôn luyện thi trắc nghiệm THPT Quốc Gia môn Toán Bản PDF - Nội dung bài viết Sách Ôn luyện thi trắc nghiệm THPT Quốc Gia môn ToánPhần 1: Định hướng kỳ thi THPT Quốc Gia và tuyển sinh Đại học, Cao đẳng môn ToánPhần 2: Nội dung ôn luyệnChương 1: Hàm sốChương 2: Hàm số mũ và hàm số logaritChương 3: Nguyên hàm và Tích phânChương 4: Số phứcChương 5: Khối đa diệnChương 6: Khối tròn xoayChương 7: Phương pháp tọa độ trong không gianChương 8: Một số đề thi mẫu Sách Ôn luyện thi trắc nghiệm THPT Quốc Gia môn Toán Sách này bao gồm 258 trang với nội dung chia thành các phần sau: Phần 1: Định hướng kỳ thi THPT Quốc Gia và tuyển sinh Đại học, Cao đẳng môn Toán Phần này giúp bạn hiểu rõ về kỳ thi quan trọng này và cung cấp định hướng cho việc ôn luyện. Phần 2: Nội dung ôn luyện Chương 1: Hàm số Chuyên đề 1.1: Tính đơn điệu của hàm số, chuyên đề 1.2: Cực trị của hàm số, chuyên đề 1.3: Giá trị lớn nhất và nhỏ nhất của hàm số, chuyên đề 1.4: Đường tiệm cận, chuyên đề 1.5: Đồ thị hàm số, chuyên đề 1.6: Tiếp tuyến và tương giao đồ thị. Chương 2: Hàm số mũ và hàm số logarit Các chuyên đề từ 2.1 đến 2.8 giúp bạn hiểu rõ về các tính chất của hàm số mũ và logarit, cũng như áp dụng chúng vào thực hành. Chương 3: Nguyên hàm và Tích phân Tìm hiểu về nguyên hàm và tích phân, các phương pháp tính diện tích hình phẳng và thể tích khối tròn xoay trong chương này. Chương 4: Số phức Giải các bài tập liên quan đến số phức và biểu diễn hình học của chúng. Chương 5: Khối đa diện Áp dụng kiến thức về thể tích khối đa diện và khoảng cách trong không gian qua các bài tập thực hành. Chương 6: Khối tròn xoay Học về hình nón, mặt trụ, mặt cầu và các tính chất liên quan. Chương 7: Phương pháp tọa độ trong không gian Giải các bài tập về tọa độ điểm, phương trình mặt cầu, mặt phẳng, đường thẳng và các bài toán tổng hợp trong không gian. Chương 8: Một số đề thi mẫu Chứa các đề thi mẫu để bạn thử sức và kiểm tra kiến thức sau khi ôn luyện. Sách được biên soạn bởi các tác giả Lương Đức Trọng, Nguyễn Như Thắng và Kiều Trung Thủy, nhằm hỗ trợ học sinh chuẩn bị cho kỳ thi THPT Quốc Gia môn Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Bí kíp Thế Lực 2016
Tài liệu Bí kíp Thế Lực 2016 bản đầy đủ được scan từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực, sách dày 216 trang bao gồm các kinh nghiệm giải toán của tác giả đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình – Oxy và Bất đẳng thức. Nội dung tài liệu : I. Bí kíp phương trình – bất phương trình 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill + Phương trình cho nghiệm đẹp + Phương trình cho nghiệm xấu + Đánh giá sau liên hợp, truy ngược dấu + Một số bài khó bấm máy – thường liên quan đến ẩn phụ 3. Advance Skill + Super Skill: Ép liên hợp + Pro Skill: Ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện [ads] III. Bí kíp Oxy 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng “=” 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện
Các chuyên đề luyện thi THPT Quốc gia môn Toán - Nguyễn Văn Lực
Tài liệu Các chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực gồm 372 trang. Tài liệu là hệ thống các bài tập được chọn lọc và giải chi tiết, phân loại theo từng chuyên đề.
Kĩ năng sử dụng máy tính Casio trong giải toán - Bùi Thế Việt
Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Tuy nhiên, máy tính cầm tay sẽ là trợ thủ đắc lực để giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình … hay kể cả là Bất Đẳng Thức. Mình (tác giả Bùi Thế Việt) là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Mình đã áp dụng nó vào đề thi THPT Quốc Gia 2015. Chỉ trong 3 – 5 phút, mình đã đưa ra lời giải chính xác cho câu Phương Trình Vô Tỷ và cũng chỉ gần 1 giờ, mình đã hoàn thành xong bài làm với điểm số tuyệt đối, là 1 trong 85/671.149 người được điểm tối đa. Vậy sử dụng sao cho hiệu quả? Hãy đến với chuyên đề Kỹ Năng Sử Dụng CASIO Trong Giải Toán. Chuyên đề này chưa phải là tất cả những Thủ Thuật mà mình đưa tới cho bạn đọc. Tuy không nhiều nhưng các thủ thuật dưới đây sẽ mang tới sự kỳ diệu mà chiếc máy tính CASIO có thể mang lại. [ads] Chuyên đề giới thiệu 8 kĩ năng sử dụng máy tính CASIO trong việc giải toán: 1. Thủ thuật sử dụng CASIO để rút gọn biểu thức. 2. Thủ thuật sử dụng CASIO để giải phương trình bậc 4. 3. Thủ thuật sử dụng CASIO để tìm nghiệm phương trình. 4. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử một ẩn. 5. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử hai ẩn. 6. Thủ thuật sử dụng CASIO để giải hệ phương trình. 7. Thủ thuật sử dụng CASIO để tích nguyên hàm, tích phân. 8. Thủ thuật sử dụng CASIO để giải bất đẳng thức.
Chuyên đề bài toán thực tế - Đoàn Văn Bộ
Tài liệu gồm 16 trang hướng dẫn phương pháp giải các bài toán thực tế thường gặp do tác giả Đoàn Văn Bộ biên soạn. Ý tưởng giải bài toán này là dựa vào phần kiến thức BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN và HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN mà rất nhiều giáo viên ở Trung học phổ thông đã bỏ qua, không dạy các em học sinh. Việc giải một số bài toán kinh tế thường dẫn đến việc xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này được nghiên cứu trong một ngành toán học với tên gọi là Quy hoạch tuyến tính. Tuy nhiên, đối với cấp bậc trung học phổ thông, ta chỉ xem xét và giải những bài toán đơn giản. Ngoài ra, tôi còn đề cập đến một số bài toán thực tế ở một số lý thuyết phần khác như: Đạo hàm, Khảo sát hàm số … Hy vọng qua chuyên đề này, khi các bạn gặp bài toán này trong đề thi THPT Quốc gia các bạn có thể làm được. [ads]