Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 của phòng GD&ĐT Yên Lạc – Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề giao lưu HSG Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc: Các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BH.BE + CH.CF = BC2. b) Chứng minh: H cách đều ba cạnh tam giác DEF. c) Trên đoạn HB, HC tương ứng lấy điểm M, N tùy ý sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định. Tìm các giá trị của x để M có giá trị là số nguyên. Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc là một công cụ hữu ích giúp các em học sinh rèn luyện, nâng cao kiến thức và kỹ năng giải bài toán. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Quỳnh Lưu - Nghệ An
Đề thi HSG Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Tìm cặp số nguyên x, y thỏa mãn. + Hai bạn Lan và Hoa vào cửa hàng sách, Lan mua một số quyển vở, Hoa không những mua gấp đôi số quyển vở của Lan mua mà còn nhiều hơn một quyển nữa. Tính số quyển vở mỗi bạn mua. Biết rằng số quyển vở Lan mua là một số nguyên tố, số quyển vở Hoa mua là lập phương của một số tự nhiên. + Một tam giác có độ dài ba cạnh là a, b, c và chu vi là 2. Chứng minh rằng: a2 + b2 + c2 + 2abc < 2.
Đề thi HSG Toán 8 năm 2020 - 2021 phòng GDĐT thành phố Vinh - Nghệ An
Ngày … tháng 04 năm 2021, phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng: 11^100 – 1 chia hết cho 1000. + Biết đa thức f(x) chia cho đa thức x – 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Tìm dư trong phép chia đa thức f(x) cho đa thức (x2 + 1)(x – 2). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD.
Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.