Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Bình Tân - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Bình Tân – TP HCM : + Công ty đồ chơi Bingbon vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường s t (xen ti mét) đi được của đoàn tàu đồ chơi là một hàm số của thời gian t (giây), hàm số đó là s t 6t 9. Trong điều kiện thực tế người ta thấy rằng nếu đoàn tàu đồ chơi di chuyển quãng đường 12 cm thì mất 2 giây và cứ trong mỗi 10 giây thì nó đi được 52 cm. a) Trong điều kiện thí nghiệm, sau 5 (giây) đoàn tàu đồ chơi di chuyển được bao nhiêu mét? b) Mẹ bé An mua đồ chơi này về cho bé chơi, bé ngồi cách mẹ 2,5 mét. Hỏi cần bao nhiêu giây để đoàn tàu đồ chơi đi từ chỗ mẹ tới chỗ bé? + Bạn Vy đi làm thêm ở tiệm café “Take away NT” với hợp đồng lương tính theo ngày, nếu một ngày bán đủ 50 ly thì bạn sẽ nhận được lương cơ bản 150000 đồng, bên cạnh đó với mỗi ly bán vượt chỉ tiêu, bạn sẽ được thưởng thêm 40% so với tiền lời một ly café. Ngày đầu tiên đi làm bạn nhận được 222000 đồng. Tính số ly café bạn Vy đã bán được trong ngày đầu tiên đi làm, biết rằng tiền lời một ly café là 6000 đồng. + Trái bóng (hình cầu) Telstar xuất hiện lần đầu tiên ở World Cup 1970 ở Mexico do Adidas sản xuất có đường kính 22,3cm. Trái bóng được may từ 32 múi da đen và trắng. Các múi da màu đen hình ngũ giác đều, các múi da màu trắng hình lục giác đều. a) Biết công thức tính diện tích mặt cầu cho bởi công thức 2 S 4R π với R là bán kính hình cầu. Tính diện tích bề mặt của quả bóng Telstar. (làm tròn đến hàng đơn vị) b) Trên bề mặt trái bóng, mỗi múi da màu đen có diện tích 2 37cm. Mỗi múi da màu trắng có diện tích 2 55,9cm. Hãy tính trên trái bóng có bao nhiêu múi da màu đen và màu trắng?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An (đề thi dành cho thí sinh thi vào trường THPT chuyên Phan Bội Châu và trường THPT chuyên ĐH Vinh, tỉnh Nghệ An); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Nguyễn Nhất Huy và thầy Trịnh Văn Luân). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm (O). Các đường cao AD, BE, CF cắt nhau tại H. Tia AH cắt (O) tại K (K khác A), tia KO cắt (O) tại M (M khác K) và tia MH cắt (O) tại P (P khác M). a) Chứng minh OD ∥ MH và 4 điểm A, O, D, P cùng nằm trên một đường tròn. b) Gọi Q là giao điểm của P A và EF. Chứng minh DQ ⊥ EF. c) Tia P E và tia P F cắt đường tròn (O) lần lượt tại L và N (L, N khác P). Chứng minh LC = NB. + Cho tập hợp A gồm 2022 số tự nhiên liên tiếp từ 1 đến 2022. Tìm một số tự nhiên n nhỏ nhất sao cho mọi tập hợp con gồm n phần tử của A đều chứa 3 phần tử là các số đôi một nguyên tố cùng nhau. + Cho n là số nguyên dương. Chứng minh rằng 2n + 36 và 122n + 25 không đồng thời là số chính phương.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Trung tâm toán học Pytago). Trích dẫn Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai : + Hai ô tô xuất phát cùng một thời điểm từ địa điểm A đến địa điểm B với vận tốc mỗi ô tô không đổi. Sau 1 giờ quãng đường đi được của ô tô thứ nhất nhiều hơn quãng đường đi được của ô tô thứ hai là 5km. Quãng đường đi được của ô tô thứ hai sau 3 giờ nhiều hơn quãng đường đi được của ô tô thứ nhất sau 2 giờ là 35km. Tính vận tốc mỗi ô tô. + Chọn ngẫu nhiên một số trong các số tự nhiên từ 1 đến 10. Tính xác suất để số được chọn là số chia hết cho 5. + Cho đường tròn (O) và điểm M ngoài đường tròn. Qua M kẻ hai tiếp tuyến phân biệt MA, MB đến đường tròn (A, B là các tiếp điểm). a) Chứng minh MAOB là tứ giác nội tiếp. b) Đường thẳng MO cắt đường tròn (O) lần lượt tại hai điểm C, D phân biệt sao cho MC < MD. Chứng minh: MA · DA = MD · AC c) Đường thẳng BO cắt đường tròn (O) tại điểm thứ hai là E. Kẻ AI vuông góc với BE tại I. Đường thẳng ME cắt AI tại K, đường thẳng MO cắt AB tại H. Chứng minh hai đường thẳng HK và BE song song.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai (đề thi dành cho thí sinh thi vào trường THPT chuyên Lào Cai); kỳ thi được diễn ra vào thứ Bảy ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Trung tâm toán học Pytago). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai : + Gọi S là tập hợp các số tự nhiên có 4 chữ số. Lấy ngẫu nhiên 1 số từ tập S. Tính xác suất để số lấy được là số chính phương không vượt quá 2022. + Theo kế hoạch một công nhân phải làm 54 sản phẩm trong một khoảng thời gian dự định. Do yêu cầu đột xuất, người đó phải làm 68 sản phẩm nên mỗi giờ người đó đã làm tăng thêm 3 sản phẩm vì thế công việc hoàn thành sớm hơn so với dự định là 20 phút. Hỏi theo dự định mỗi giờ người đó phải làm bao nhiêu sản phẩm, biết rằng mỗi giờ người đó làm được không quá 12 sản phẩm. + Cho tam giác nhọn ABC không cân (AB < AC) nội tiếp đường tròn (O), ba đường cao AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB) của tam giác ABC cắt nhau tại H. Gọi I, M lần lượt là trung điểm của AH và BC. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm K (K khác A). a) Chứng minh rằng tứ giác DMEF nội tiếp. b) Chứng minh rằng tứ giác IOMK là hình thang cân. c) Chứng minh rằng KF.HE = KE.HF. d) Tiếp tuyến tại A và K của đường tròn ngoại tiếp tam giác AEF cắt nhau tại T. Chứng minh rằng TM, AH, EF đồng quy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Đà Nẵng (đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, thành phố Đà Nẵng); kỳ thi được diễn ra vào sáng Chủ Nhật ngày 12 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Đà Nẵng : + Cho phương trình x2 – 2x + k2 – 3k – 9 = 0 với k là tham số. Khi phương trình đã cho có hai nghiệm x1 và x2, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Q. + Cho đường tròn (O) bán kính R và điểm A nằm trên đường tròn. Đường tròn (A;R) cắt đường tròn (O) tại hai điểm B và C. Gọi M là trung điểm của AB, tia MO cắt (O) tại điểm D. Tia BC cắt AD tại E và cắt (O) tại điểm thứ hai là F. Tính độ dài đoạn thẳng DE và diện tích tứ giác ACFE theo R. + Cho tam giác ABC nhọn có AB < AC, trực tâm H và nội tiếp đường tròn (O). Gọi M là trung điểm của BC và K là hình chiếu của H trên AM. Tia AM cắt đường tròn ngoại tiếp tam giác BKC tại điểm thứ hai là N. Chứng minh rằng tứ giác ABNC là hình bình hành.