Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều

Tài liệu gồm 313 trang, hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều (tập 1 và tập 2). MỤC LỤC : Chương 1 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT 1. §1 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 1. A Phương trình tích có dạng (ax + b)(cx + d) = 0 (a khác 0; c khác 0) 1. B Phương trình chứa ẩn ở mẫu 3. C Bài tập 5. §2 – PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 10. A Phương trình bậc nhất hai ẩn 10. B Hệ hai phương trình bậc nhất hai ẩn 13. C Bài tập 15. §3 – GIẢI HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 20. A Giải hệ phương trình bằng phương pháp thế 20. B Giải hệ phương trình bằng phương pháp cộng đại số 22. C Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình bậc nhất hai ẩn 25. D Bài tập 26. §4 – BÀI TẬP CUỐI CHƯƠNG I 31. Chương 2 . BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 39. §1 – BẤT ĐẲNG THỨC 39. A Nhắc lại về thứ tự trong tập hợp số thực 39. B Bất đẳng thức 40. C Bài tập 44. §2 – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 47. A Mở đầu về bất phương trình một ẩn 47. B Bất phương trình bậc nhất một ẩn 48. C Cách giải 48. D Bài tập 52. §3 – BÀI TẬP CUỐI CHƯƠNG II 56. Chương 3 . CĂN THỨC 62. §1 – CĂN BẬC HAI VÀ CĂN BẬC BA CỦA SỐ THỰC 62. A Căn bậc hai của số thực không âm 62. B Căn bậc ba 64. C Sử dụng máy tính cầm tay để tìm căn bậc hai, căn bậc ba của một số hữu tỉ 65. D Bài tập 67. §2 – CĂN THỨC 70. A Một số phép tính về căn bậc hai 70. B Bài tập 74. §3 – CĂN THỨC BẬC HAI VÀ CĂN THỨC BẬC BA CỦA BIỂU THỨC ĐẠI SỐ 78. A Căn thức bậc hai 78. B Căn thức bậc ba 80. C Bài tập 83. §4 – MỘT SỐ PHÉP BIẾN ĐỔI CĂN THỨC BẬC HAI CỦA BIỂU THỨC ĐẠI SỐ 86. A Căn thức bậc hai của một bình phương 86. B Căn thức bậc hai của một tích 86. C Căn thức bậc hai của một thương 87. D Trục căn thức ở mẫu 88. E Bài tập 90. §5 – BÀI TẬP CUỐI CHƯƠNG III 93. Chương 4 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 98. §1 – TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 98. A Tỉ số lượng giác của góc nhọn 98. B Tỉ số lượng giác của hai góc phụ nhau 100. C Sử dụng máy tính cầm tay để tìm giá trị lượng giác của một góc nhọn 103. D Bài tập 104. §2 – MỘT SỐ HỆ THỨC LƯỢNG VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG 108. A Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn 108. B Tính cạnh góc vuông theo cạnh góc vuông còn lại và tỉ số lượng giác của góc nhọn 110. C Áp dụng tỉ số lượng giác của góc nhọn để giải tam giác vuông 110. D Bài tập 113. §3 – ỨNG DỤNG CỦA TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 117. A Ước lượng khoảng cách 117. B Bài tập 120. §4 – BÀI TẬP CUỐI CHƯƠNG IV 123. Chương 5 . ĐƯỜNG TRÒN 126. §1 – ĐƯỜNG TRÒN. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN 126. A Khái niệm đường tròn 126. B Liên hệ giữa đường kính và dây của đường tròn 127. C Tính đối xứng của đường tròn 128. D Vị trí tương đối của hai đường tròn 130. E Bài tập 130. §2 – VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 134. A Đường thẳng và đường tròn cắt nhau 134. B Đường thẳng và đường tròn tiếp xúc nhau 134. C Đường thẳng và đường tròn không giao nhau 135. D Bài tập 136. §3 – TIẾP TUYẾN CỦA ĐƯỜNG TRÒN 139. A Nhận biết tiếp tuyến của đường tròn 139. B Tính chất của hai tiếp tuyến cắt nhau 142. C Bài tập 144. §4 – GÓC Ở TÂM – GÓC NỘI TIẾP 148. A Góc ở tâm 148. B Cung. Số đo cung 149. C Góc nội tiếp 153. D Bài Tập 155. §5 – ĐỘ DÀI CUNG TRÒN, DIỆN TÍCH HÌNH QUẠT TRÒN, DIỆN TÍCH HÌNH VÀNH KHUYÊN 159. A Độ dài cung tròn 159. B Diện tích hình quạt tròn 160. C Diện tích hình vành khuyên 163. D Bài tập 164. §6 – BÀI TẬP CUỐI CHƯƠNG V 167. Chương 6 . MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT 172. §1 – MÔ TẢ VÀ BIỂU DIỄN DỮ LIỆU TRÊN CÁC BẢNG, BIỂU ĐỒ 172. A Biểu diễn dữ liệu trên bảng thống kê, biểu đồ tranh 172. B Biểu diễn dữ liệu trên biểu đồ cột, biểu đồ cột ghép 173. C Biểu diễn dữ liệu trên biểu đồ đoạn thẳng 175. D Biểu diễn dữ liệu trên biểu đồ hình quạt tròn 177. E Bài tập 180. §2 – TẦN SỐ. TẦN SỐ TƯƠNG ĐỐI 186. A Tần số. Bảng tần số. Biểu đồ tần số 186. B Tần số tương đối. Bảng tần số tương đối. Biểu đồ tần số tương đối 189. C Bài tập 192. §3 – TẦN SỐ GHÉP NHÓM. TẦN SỐ TƯƠNG ĐỐI GHÉP NHÓM 196. A Mẫu số liệu ghép nhóm 196. B Tần số ghép nhóm. Bảng tần số ghép nhóm 197. C Tần số tương đối ghép nhóm. Bảng tần số tương đối ghép nhóm. Biểu đồ tần số tương đối ghép nhóm 199. D Bài tập 202. §4 – PHÉP THỬ NGẪU NHIÊN VÀ KHÔNG GIAN MẪU. XÁC SUẤT CỦA BIẾN CỐ 207. A Phép thử ngẫu nhiên và không gian mẫu 207. B Xác suất của biến cố 208. C Bài tập 211. §5 – ÔN TẬP CHƯƠNG VI 215. Chương 7 . HÀM SỐ Y = AX2 (A KHÁC 0) 220. §1 – HÀM SỐ Y = AX2 (A KHÁC 0) 220. A Hàm số y = ax2 (a khác 0) 220. B Đồ thị hàm số y = ax2 (a khác 0) 221. C Bài tập 224. §2 – PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 228. A Định nghĩa 228. B Giải phương trình 228. C Ứng dụng của phương trình bậc hai một ẩn 232. D Sử dụng máy tính cầm tay để tìm nghiệm của phương trình bậc hai một ẩn 235. E Bài tập 235. §3 – ĐỊNH LÍ VI-ÉT 240. A Định lí Vi-ét 240. B Tìm hai số khi biết tổng và tích 242. C Bài tập 243. §4 – BÀI TẬP CUỐI CHƯƠNG VII 247. Chương 8 . ĐƯỜNG TRÒN NGOẠI TIẾP VÀ ĐƯỜNG TRÒN NỘI TIẾP 253. §1 – ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC. ĐƯỜNG TRÒN NỘI TIẾP TAM GIÁC 253. A Đường tròn ngoại tiếp tam giác 253. B Đường tròn nội tiếp tam giác 256. C Bài tập 258. §2 – TỨ GIÁC NỘI TIẾP ĐƯỜNG TRÒN 263. A Định nghĩa 263. B Tính chất 264. C Hình chữ nhật, hình vuông nội tiếp đường tròn 264. D Bài tập 265. §3 – BÀI TẬP CUỐI CHƯƠNG VIII 270. Chương 9 . ĐA GIÁC ĐỀU 272. §1 – ĐA GIÁC ĐỀU. HÌNH ĐA GIÁC ĐỀU TRONG THỰC TIỄN 272. A Đa giác. Đa giác lồi 272. B Đa giác đều 274. C Hình đa giác đều trong thực tiễn 275. D Bài tập 276. §2 – PHÉP QUAY 278. A Khái niệm 278. B Phép quay giữ nguyên hình đa giác đều 279. C Bài tập 280. §3 – BÀI TẬP CUỐI CHƯƠNG IX 283. Chương 10 . HÌNH HỌC TRỰC QUAN 287. §1 – HÌNH TRỤ 287. A Hình trụ 287. B Diện tích xung quanh của hình trụ 289. C Thể tích của hình trụ 290. D Bài tập 290. §2 – HÌNH NÓN 294. A Hình nón 294. B Diện tích xung quanh của hình nón 294. C Thể tích của hình nón 295. D Bài tập 296. §3 – HÌNH CẦU 299. A Hình cầu 299. B Diện tích mặt cầu 300. C Thể tích của khối cầu 301. D Bài tập 301. §4 – BÀI TẬP CUỐI CHƯƠNG X 303.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề căn bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề căn bậc haiPhần lý thuyếtPhần bài tập và các dạng toán Nội dung mới sau khi đã viết lại: Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Tài liệu này bao gồm 25 trang với nội dung chi tiết về kiến thức cần nhớ, các dạng toán và bài tập liên quan đến căn bậc hai trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết để học sinh có thể tự học và ôn tập hiệu quả. Phần lý thuyết Trong phần này, học sinh sẽ được tóm tắt về khái niệm căn bậc hai, khái niệm về căn bậc hai số học, và cách so sánh các căn bậc hai số học với nhau. Phần bài tập và các dạng toán Tài liệu cung cấp các dạng toán phổ biến liên quan đến căn bậc hai như: tìm căn bậc hai và căn bậc hai số học của một số, tìm số có căn bậc hai số học là một số cho trước, tính giá trị của biểu thức chứa căn bậc hai, so sánh các căn bậc hai số học, tìm giá trị của x thỏa mãn điều kiện cho trước, và chứng minh một số là số vô tỷ. Ngoài ra, tài liệu cũng bao gồm bài tập trắc nghiệm và bài tập về nhà để học sinh có cơ hội ôn tập và kiểm tra kiến thức của mình. File WORD cũng được cung cấp để giáo viên có thể sử dụng trong việc giảng dạy và kiểm tra. Với nội dung đầy đủ và chi tiết, tài liệu này sẽ giúp học sinh nắm vững kiến thức về căn bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan một cách hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phươngTóm tắt lý thuyếtBài tập và dạng toánBài tập thực hành Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phương Tài liệu này bao gồm 14 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến việc kết hợp giữa phép chia và phép khai phương trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng hiểu và tự kiểm tra kiến thức của mình. Tóm tắt lý thuyết 1. Định lý quan trọng: Với mọi số A và B khác 0, ta có A^2 = B^2 khi và chỉ khi A = B hoặc A = -B. 2. Quy tắc khai phương và chia các căn bậc hai: Hướng dẫn cụ thể cách khai phương một thương và chia căn bậc hai của các số dương. Bài tập và dạng toán Để giúp học sinh ôn tập và nắm vững kiến thức, tài liệu cung cấp các dạng toán phổ biến như thực hiện phép tính, rút gọn biểu thức và giải phương trình. Mỗi dạng toán đều có cách giải chi tiết để học sinh hiểu rõ từng bước giải quyết. Cụ thể: Dạng 1: Thực hiện phép tính theo công thức khai phương một thương. Dạng 2: Rút gọn biểu thức bằng quy tắc khai phương một thương. Dạng 3: Giải phương trình chứa căn thức, lưu ý các điều kiện đi kèm. Bài tập thực hành Bên cạnh các dạng toán, tài liệu còn cung cấp bài tập trắc nghiệm và bài tập về nhà để học sinh tự luyện tập và kiểm tra kỹ năng của mình. Đồng thời, file Word cung cấp sẵn cho giáo viên để dễ dàng in ấn và sử dụng trong giảng dạy.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.
Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.