Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mở đầu hình học giải tích không gian Oxyz

Ebook Mở đầu hình học giải tích không gian Oxyz gồm 411 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh và nhóm tác giả Chinh phục Olympic Toán, mang tới cho bạn đọc cái nhìn khái quát và cơ bản nhất về chủ đề hình học Giải tích không gian Oxyz, thông qua các lý thuyết cơ bản và ví dụ minh họa kèm lời giải chi tiết. Tài liệu giúp các em học sinh lớp 12 học tốt chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian và ôn thi tốt nghiệp THPT môn Toán. Chương 1 . Mở đầu hình học tọa độ không gian. + Dạng 1. Tìm tọa độ của vectơ, của điểm. + Dạng 2. Tích vô hướng của hai vectơ và ứng dụng. + Dạng 3. Vận dụng công thức trung điểm và trọng tâm. + Dạng 4. Chứng minh hai vectơ cùng phương, không cùng phương. + Dạng 5. Tích có hướng của hai vectơ và ứng dụng. Chương 2 . Lý thuyết về phương trình đường thẳng. + Dạng 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt. + Dạng 2. Đường thẳng Δ đi qua điểm M và song song với đường thẳng d. + Dạng 3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 không cùng phương. + Dạng 5. Viết phương trình đường thẳng Δ  đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). + Dạng 6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng cắt nhau (α), (β). + Dạng 7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β). + Dạng 8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 không chứa A. + Dạng 9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2. + Dạng 10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d. + Dạng 11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A không thuộc d2. + Dạng 12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). + Dạng 13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. + Dạng 14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (d không vuông góc với (α)). + Dạng 15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. + Dạng 16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2. + Dạng 17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. + Dạng 18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α). + Dạng 19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. [ads] Chương 3 . Các bài toán về phương trình mặt phẳng. + Dạng 1. Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và song song với một mặt phẳng. + Dạng 3. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. + Dạng 5. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β). + Dạng 6. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 7. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ và Δ’ chéo nhau). + Dạng 8. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và điểm M. + Dạng 9. Viết phương trình mặt phẳng chứa hai đường thẳng cắt nhau. + Dạng 10. Viết phương trình mặt phẳng chứa hai đường thẳng song song. + Dạng 11. Viết phương trình mặt phẳng đi qua một điểm và song song với hai đường thẳng chéo nhau. + Dạng 12. Viết phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cho trước. + Dạng 13. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k. + Dạng 14. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách điểm M một khoảng k. + Dạng 15. Viết phương trình mặt phẳng tiếp xúc với mặt cầu. Chương 4 . Các bài toán về phương trình mặt cầu. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và tiếp xúc. Chương 5 . Các bài toán cực trị trong hình học không gian Oxyz. + Dạng 1. Cho hai điểm A, B, mặt phẳng (P) và đường thẳng d. Tìm tọa độ điểm M thuộc (P) sao cho chu vi tam giác MAB nhỏ nhất. Tìm tọa độ điểm M thuộc d sao cho chu vi tam giác MAB nhỏ nhất. + Dạng 2. Cho hai điểm A, B và đường thẳng (d). Tìm trên (d) điểm M để: MA^2 + MB^2 đạt giá trị nhỏ nhất; |MA + MB| đạt giá trị nhỏ nhất; tam giác MAB có diện tích nhỏ nhất. + Dạng 3. Cho điểm A và đường thẳng (d). Viết phương trình mặt phẳng (Q) chứa (d) có d(A;(Q)) lớn nhất, nhỏ nhất. + Dạng 4. Cho hai đường thẳng d và d’. Viết phương trình mặt phẳng (P) chứa d và tạo với đường thẳng d’ một góc lớn nhất. + Dạng 5. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng lớn nhất. + Dạng 6. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng nhỏ nhất. + Dạng 7. Tìm M sao cho P = a1MA1^2 + . . . + anMAn^2 nhỏ nhất / lớn nhất. + Dạng 8. Cho mặt cầu (S) và mặt phẳng (α). Tìm điểm M trên mặt cầu sao cho khoảng cách từ nó đến mặt cầu đạt giá trị lớn nhất hoặc giá trị nhỏ nhất. + Dạng 9. Cho mặt cầu (S) và đường thẳng (d). Tìm điểm M trên mặt cầu (S) sao cho khoảng cách từ nó đến đường thẳng d đạt giá trị lớn nhất hoặc đạt giá trị nhỏ nhất? Chương 6 . Phương pháp tọa độ hóa hình cổ điển.

Nguồn: toanmath.com

Đọc Sách

Bài giảng hệ tọa độ trong không gian - Nguyễn Bảo Vương
Tài liệu gồm 54 trang bao gồm tóm tắt lý thuyết cơ bản, công thức tính tọa độ, phân dạng toán, hướng dẫn giải và bài tập các chủ đề trong bài học hệ tọa độ trong không gian (Bài 1, Hình học 12 chương 3: Phương pháp tọa độ trong không gian), các bài tập trong tài liệu có đáp án và lời giải chi tiết. Tài liệu do thầy Nguyễn Bảo Vương biên soạn và giảng dạy. Các vấn đề hệ tọa độ trong không gian : Vấn đề 1. CÁC ĐỊNH TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ VECTƠ Phương pháp : Sử dụng các kết quả trong phần: + Tọa độ của vectơ. + Tọa độ của điểm. + Liên hệ giữa tọa độ vectơ và tọa độ hai điểm mút. Vấn đề 2. PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Với phương trình cho dưới dạng chính tắc (S): (x − a)^2 + (y − b)^2 + (z − c)^2 = k, với k > 0 ta lần lượt có: + Bán kính bằng R = √k. + Tọa độ tâm I là nghiệm của hệ phương trình: x – a = 0, y – b = 0 và z – c = 0. Suy ra I(a; b; c). Với phương trình cho dưới dạng tổng quát ta thực hiện theo các bước: + B­ước 1: Chuyển phương trình ban đầu về dạng:(S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0. (1) + B­ước 2: Để (1) là phương trình mặt cầu điều kiện là: a2 + b2 + c2 − d > 0. + B­ước 3: Khi đó (S) có thuộc tính: Tâm I(a; b; c) và bán kính R = √(a2 + b2 + c2 − d). [ads] Vấn đề 3. VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Gọi (S) là mặt cầu thoả mãn điều kiện đầu bài. Chúng ta lựa chọn phương trình dạng tổng quát hoặc dạng chính tắc. Khi đó: 1. Muốn có phương trình dạng chính tắc, ta lập hệ 4 phương trình với bốn ẩn a, b, c, R, điều kiện R > 0. Tuy nhiên, trong trường hợp này chúng ta thường chia nó thành hai phần, bao gồm: + Xác định bán kính R của mặt cầu. + Xác tâm I(a; b; c) của mặt cầu. Từ đó, chúng ta nhận được phương trình chính tắc của mặt cầu. 2. Muốn có phương trình dạng tổng quát, ta lập hệ 4 phương trình với bốn ẩn a, b, c, d, điều kiện a2 + b2 + c2 − d > 0. Chú ý : 1. Cần phải cân nhắc giả thiết của bài toán thật kỹ càng để lựa chọn dạng phương trình thích hợp. 2. Trong nhiều trường hợp đặc thù chúng ta còn sử dụng phương pháp quỹ tích để xác định phương trình mặt cầu.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 122 trang phân dạng và tuyển chọn các bài tập trắc nghiệm có đáp án chuyên đề phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Nguyễn Vũ Minh. Nội dung tài liệu gồm 4 phần: + Phần 01: HỆ TỌA ĐỘ TRONG KHÔNG GIAN + Phần 02:VEC TƠ CÙNG PHƯƠNG – TÍCH CÓ HƯỚNG + Phần 03: MẶT CẦU + Phần 4: PHƯƠNG TRÌNH MẶT PHẲNG
Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian
Cuốn sách Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian của các tác giả Lương Đức Trọng, Đặng Đình Hanh, Phạm Hoàng Hà gồm 360 trang với các chuyên đề bám sát các bài học trong SGK và một số chuyên đề mở rộng, nâng cao đáp ứng cho các bài tập có tính chất phân loại cao trong đề thi. Cấu trúc của mỗi chuyên đề gồm: tóm tắt nội dung kiến thức cơ bản, các dạng bài tập cơ bản, các ví dụ ở dạng bài tập trắc nghiệm khách quan được phân hóa theo 4 mức độ: nhận biết, thông hiểu, vận dụng và vận dụng cao; trong đó các bài tập cơ bản chiếm khoảng 70% và các bài tập nâng cao chiếm 30%. Ở mỗi ví dụ, ngoài việc trình bày lời giải để học sinh nắm vững kiến thức cơ bản, trong nhiều ví dụ có trình bày những nhận xét đặc thù để giúp học sinh có thể nhanh chóng loại bỏ một hoặc hai đáp án gây nhiễu. Đặc biệt, sau nhiều ví dụ có phần thủ thuật chọn nhanh để giúp học sinh nhanh chóng tìm được đáp án chính xác. Trong chuyên đề cuối cùng, ngoài các bài tập tổng hợp của hình giải tích không gian còn có phần ứng dụng của hình giải tích không gian vào giải một số bài tập hình không gian. Cuối mỗi chuyên đề có bài tập để học sinh tự rèn luyện. Kết thúc mỗi chuyên đề là phần Đáp án – Hướng dẫn giải, phần này bao gồm đáp án của tất cả các câu hỏi, bài tập và hướng dẫn giải những câu hỏi, bài tập điển hình hoặc những bài tập khó để học sinh có thể đối chiếu, qua đó giúp học sinh tích lũy kinh nghiệm, hình thành phương pháp giải các bài tập. [ads] Sách gồm các chủ đề : 1. Tọa độ trong không gian 2. Tích có hướng của hai vectơ và một số ứng dụng 3. Phương trình mặt phẳng 4. Phương trình đường thẳng 5. Vị trí tương đối của đường thẳng, mặt phẳng 6. Bài toán về hình chiếu vuông góc trong không gian 7. Góc và khoảng cách 8. Phương trình mặt cầu 9. Điểm, đường thẳng, mặt phẳng và mặt cầu 10. Ôn tập, các bài toán tổng hợp 11. Một số đề tổng hợp
Chuyên đề mặt cầu trong không gian Oxyz - Phạm Văn Long
Tài liệu gồm 28 trang gồm lý thuyết mặt cầu, hướng dẫn phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề mặt cầu trong không gian Oxyz. 1. Tóm tắt lý thuyết, phương trình  mặt cầu và một số công thức tính cơ bản 2. Ví dụ minh họa về 2 dạng toán + Dạng 1: Viết phương trình mặt cầu Thuật toán 1: Bước 1: Xác định tâm I Bước 2: Xác định bán kính R của (S) Bước 3: Mặt cầu (S) có tâm I và bán kính R Thuật toán 2: Gọi phương trình dạng tổng quát của (S), sử dụng các điều kiện để tìm các tham số [ads] Kỹ năng xác định tâm và bán kính của đường tròn trong không gian Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C) Bước 1: Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P) Bước 2: Tâm H của đường tròn (C) là giao điểm của d và mặt phẳng (P) Bước 3: Gọi r là bán kính của (C) + Dạng 2: Sự tương giao và sự tiếp xúc Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I; (α)) = R 3. Bài tập trắc nghiệm tự luyện được sắp xếp theo mức độ phân loại