Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang

Nội dung Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm 2023 của phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang. Đề thi bao gồm 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, thời gian làm bài 120 phút, không tính thời gian nhận đề. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào ngày thứ Ba, 18 tháng 04 năm 2023. Một công ty sản xuất hàng may mặc phục vụ xuất khẩu cần may 2100 chiếc áo trong một khoảng thời gian nhất định. Để đáp ứng nhanh hơn, họ đã may nhiều hơn 35 áo mỗi ngày. Nhờ vậy, công việc được hoàn thành sớm hơn 3 ngày. Câu hỏi đặt ra là mỗi ngày công ty cần may bao nhiêu chiếc áo? Đề bài tiếp theo yêu cầu chứng minh một số tính chất của tam giác nội tiếp trong đường tròn và của các đường cao, đường trung tuyến của nó. Cần chứng minh rằng các điểm trên đường tròn ngoại tiếp tứ giác nội tiếp là một chuỗi liên tục. Cuối cùng, cần tính tích AK AH trong một đường tròn cho trước. Đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Hy vọng các em sẽ vượt qua thách thức và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các em học tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Cho parabol (P): y = 2×2 và đường thẳng (d): y = (7 – m)x + 3m – 3. Tìm các giá trị nguyên âm của m để (P) cắt (d) tại hai điểm phân biệt có hoành độ nhỏ hơn 4. + Cho đường tròn (O) đường kính AB. Trên (O) lấy hai điểm C, D nằm khác phía đối với AB và CD không đi qua O. Gọi E là giao điểm của AC và BD, F là giao điểm của AD và BC, I là trung điểm đoạn thẳng EF. Chứng minh IC là tiếp tuyến của (O). + Cho đường tròn (O) và điểm M nằm ngoài (O), vẽ tiếp tuyến MA và cát tuyến MBC không đi qua O (MB < MC). Gọi H là hình chiếu vuông góc của A trên MO. a) Chứng minh: Tứ giác BHOC nội tiếp. b) Vẽ đường thẳng qua B song song với AC cắt các đường thẳng MA, AH lần lượt tại K, I. Chứng minh KB = BI.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Một cửa hàng nhập 10 sản phẩm gồm hai loại A và B về bán. Biết mỗi sản phẩm loại A nặng 9kg, mỗi sản phẩm loại B nặng 10kg và tổng khối lượng của tất cả các sản phẩm là 95kg. Hỏi cửa hàng đã nhập bao nhiêu sản phẩm mỗi loại? + Cho tam giác ABC vuông ở A, có đường cao AH. Biết góc ABC = 60°, độ dài BC = 40cm. a) Tính độ dài cạnh AB. b) Gọi điểm K thuộc đoạn thẳng AC sao cho HK vuông góc với AC. Tính độ dài đoạn HK. + Cho tam giác ABC có ba góc nhọn (BA < BC) và nội tiếp đường tròn tâm O. Hai tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại I. Tia BI cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh rằng tứ giác OAIC nội tiếp. b) Chứng minh IC2 = IB.ID. c) Gọi M là trung điểm của BD. Tia CM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng: MO vuông góc AE.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thừa Thiên Huế : + Một người đi xe đạp với vận tốc không đổi từ A đến B cách nhau 36 km. Trên cùng tuyến đường đó, khi đi từ B trở về A, người này đi với vận tốc lớn hơn 3 km/h so với vận tốc khi đi từ A đến B vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho tam giác ABC có ba góc nhọn, AB > AC và nội tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại D. Gọi E là hình chiếu vuông góc của O trên đường thẳng BC. a) Chứng minh AOED là tứ giác nội tiếp. b) Đường tròn ngoại tiếp tứ giác AOED cắt đường tròn (O) tại điểm thứ hai là F (F không trùng với A). Chứng minh DF là tiếp tuyến của đường tròn (O) và AB FB AC FC. c) Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại G. Chứng minh ba điểm A, F, G thẳng hàng. + Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng quanh cạnh OB cố định thì được một hình nón có thể tích bằng 800pi cm3. Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng 1920pi cm3. Tính OB và OC.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Trà Vinh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Trà Vinh : + Cho phương trình x2 − 2(m − 1)x + 2m − 3 = 0 (x là biến và m là tham số). a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của tham số m. b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa (x1 − 2)(2×1 + 3×2 − 3x1x2 + 2m) = 0. + Cho tam giác ABC có ba góc nhọn (với AB < AC) nội tiếp đường tròn (O). Các đường cao BD và CE cắt nhau tại H. Các đường thẳng DE và CB cắt nhau tại M, AM cắt (O) tại N (N khác A). Chứng minh: a) Tứ giác BCDE nội tiếp và MB.MC = MD.ME. b) MDN = MAE. c) HN vuông góc AM. + Cho các số thực a, b thỏa mãn a2 + b2 = 4. Tìm giá trị nhỏ nhất của biểu thức T = 4 + 4ab – a4 – b4.