Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2022 cụm trường THCS quận Ba Đình Hà Nội

Nội dung Đề thi thử Toán vào năm 2022 cụm trường THCS quận Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022 cụm trường THCS quận Ba Đình Hà Nội Đề thi thử Toán vào năm 2022 cụm trường THCS quận Ba Đình Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến mọi người đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm 2022 của cụm trường THCS trực thuộc UBND quận Ba Đình, Hà Nội. Cụm trường gồm các trường THCS Nguyễn Công Trứ, Nguyễn Trãi, Ba Đình, Thống Nhất và thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu trong đề thi thử: Câu 1: Trong phong trào thi đua trồng cây dịp đầu năm mới, lớp 9A đã đặt kế hoạch trồng 300 cây xanh cùng loại, mỗi học sinh trồng số cây như nhau. Do ảnh hưởng của dịch COVID-19, 5 bạn không tham gia trồng cây được và mỗi bạn còn lại đã trồng thêm 2 cây để hoàn thành kế hoạch. Hãy tính số học sinh của lớp 9A. Câu 2: Người ta nhấn chìm hoàn toàn một tượng đá nhỏ vào một lọ thủy tinh có nước dạng hình trụ. Diện tích đáy lọ thủy tinh là 12,8cm2, nước trong lọ dâng lên thêm 8,5cm. Bạn hãy tính thể tích của tượng đá. Câu 3: Cho hai số thực không âm. Hãy tìm giá trị lớn nhất của biểu thức. Đây chỉ là một phần nhỏ trong đề thi thử Toán vào lớp 10 năm 2022 của cụm trường THCS quận Ba Đình - Hà Nội. Chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .