Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập chuyên đề hàm số

Nội dung Lý thuyết và bài tập chuyên đề hàm số Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề hàm sốCHỦ ĐỀ 1: HÀM SỐ BẬC NHẤTCHỦ ĐỀ 2: HÀM SỐ Y = AXCHỦ ĐỀ 3: HÀM SỐ Y = AX + BCHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Lý thuyết và bài tập chuyên đề hàm số Tài liệu này bao gồm 55 trang lý thuyết quan trọng và hướng dẫn cách giải các bài toán liên quan đến hàm số và đồ thị hàm số như y = ax, y = ax + b, y = ax^2, trong chương trình Toán lớp 9. Đây là tài liệu phù hợp để ôn luyện và nâng cao kiến thức Toán của học sinh lớp 9, bồi dưỡng học sinh giỏi môn Toán, và luyện thi vào lớp 10. Chi tiết nội dung tài liệu lý thuyết và bài tập chuyên đề hàm số: CHỦ ĐỀ 1: HÀM SỐ BẬC NHẤT Nếu y phụ thuộc vào x và mỗi giá trị của x tương ứng với duy nhất một giá trị của y, thì y được gọi là hàm số của x. Đồ thị của hàm số y = f(x) là tập hợp các điểm biểu diễn các cặp giá trị (x;f(x)) trên mặt phẳng tọa độ. Y là hàm hằng nếu y luôn nhận một giá trị không đổi khi x thay đổi. Hàm số đồng biến và hàm số nghịch biến. CHỦ ĐỀ 2: HÀM SỐ Y = AX Hàm số y = ax (a khác 0) xác định với mọi số thực a. Đồ thị của hàm số y = ax là một đường thẳng đi qua gốc tọa độ. Hàm số y = ax đồng biến khi a > 0 và nghịch biến khi a < 0. CHỦ ĐỀ 3: HÀM SỐ Y = AX + B Hàm số bậc nhất: y = ax + b, với a và b là số thực và a khác 0. Hàm số y = ax + b (a khác 0) xác định với mọi số thực. Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0. Đồ thị của hàm số bậc nhất là một đường thẳng cắt cả hai trục tọa độ. CHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Hàm số y = ax^2 (a khác 0) xác định với mọi x thuộc R. Nếu a > 0, hàm số nghịch biến với x < 0, đồng biến với x > 0, và bằng 0 với x = 0. Nếu a < 0, hàm số đồng biến với x < 0, nghịch biến với x > 0, và bằng 0 với x = 0. Đồ thị của hàm số là một parabol đi qua gốc tọa độ và có trục tung là trục đối xứng. Đây là những kiến thức căn bản và quan trọng về hàm số mà học sinh cần nắm vững để có thể giải quyết các bài toán Toán hiệu quả. Hãy ôn tập và áp dụng những kiến thức này vào thực hành để nâng cao trình độ Toán của bạn!

Nguồn: sytu.vn

Đọc Sách

Các dạng toán về đường tròn
Nội dung Các dạng toán về đường tròn Bản PDF - Nội dung bài viết Các dạng toán về đường trònVấn đề 1: Sự xác định đường tròn và tính chất đối xứng của đường tròn (Phần 1)Vấn đề 2: Sự xác định đường tròn và tính chất đối xứng của đường tròn (Phần 2)Vấn đề 3: Đường kính và dây của đường tròn (Phần 1)Vấn đề 4: Đường kính và dây của đường tròn (Phần 2)... (Các vấn đề khác) Các dạng toán về đường tròn Đây là tài liệu hướng dẫn giải các dạng toán về đường tròn, phù hợp cho học sinh lớp 9 tham khảo khi học chương trình Toán lớp 9 (tập 1) phần Hình học chương 2. Vấn đề 1: Sự xác định đường tròn và tính chất đối xứng của đường tròn (Phần 1) Phần này tóm tắt lí thuyết và bao gồm các bài tập và dạng toán như: Dạng 1: Chứng minh các điểm cho trước cùng nằm trên một đường tròn. Vấn đề 2: Sự xác định đường tròn và tính chất đối xứng của đường tròn (Phần 2) Phần này tóm tắt lí thuyết và bao gồm các bài tập và dạng toán như: Dạng 2: Xác định vị trí tương đối của một điểm đối với một đường tròn. Dạng 3: Tính bán kính của đường tròn ngoại tiếp tam giác và số đo của các góc liên quan. Vấn đề 3: Đường kính và dây của đường tròn (Phần 1) Phần này tóm tắt lí thuyết và bao gồm các bài tập và dạng toán như: Dạng 1: Tính độ dài đoạn thẳng. Vấn đề 4: Đường kính và dây của đường tròn (Phần 2) Phần này tóm tắt lí thuyết và bao gồm các bài tập và dạng toán như: Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. ... (Các vấn đề khác) Các vấn đề khác được giải quyết tương tự, bao gồm lí thuyết, bài tập và các dạng toán cụ thể để học sinh tham khảo và ôn tập.
Các dạng toán hệ thức lượng trong tam giác vuông
Nội dung Các dạng toán hệ thức lượng trong tam giác vuông Bản PDF - Nội dung bài viết Các dạng toán hệ thức lượng trong tam giác vuôngVấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 1)Vấn đề 2: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 2)Vấn đề 3: Luyện tập hệ thức về cạnh và đường cao trong tam giác vuôngVấn đề 4: Tỉ số lượng giác của góc nhọn (phần 1)Vấn đề 5: Tỉ số lượng giác của góc nhọn (phần 2)Vấn đề 6: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 1)Vấn đề 7: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 2)Ôn tập chủ đề 3Hướng dẫn giải Các dạng toán hệ thức lượng trong tam giác vuông Để giúp học sinh lớp 9 hiểu rõ và áp dụng các hệ thức lượng trong tam giác vuông, tài liệu này cung cấp các phân loại và hướng dẫn giải chi tiết. Với 35 trang tài liệu, bạn sẽ được học về: Vấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 1) - Tóm tắt lý thuyết và bài tập về tính độ dài các đoạn thẳng trong tam giác vuông. - Bài tập về nhà để củng cố kiến thức đã học. Vấn đề 2: Hệ thức về cạnh và đường cao trong tam giác vuông (phần 2) - Tóm tắt lý thuyết và bài tập về chứng minh các hệ thức liên quan đến tam giác vuông. Vấn đề 3: Luyện tập hệ thức về cạnh và đường cao trong tam giác vuông - Tóm tắt lý thuyết, bài tập tự luyện và bài tập về nhà để rèn luyện kỹ năng giải toán. Vấn đề 4: Tỉ số lượng giác của góc nhọn (phần 1) - Tóm tắt lý thuyết, bài tập về tính tỉ số lượng giác của góc nhọn, tính cạnh và góc. - Bài tập về nhà để tự kiểm tra kiến thức. Vấn đề 5: Tỉ số lượng giác của góc nhọn (phần 2) - Tóm tắt lý thuyết, bài tập về sắp xếp dãy tỉ số lượng giác và dựng góc nhọn. Vấn đề 6: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 1) - Tóm tắt lý thuyết, bài tập giải tam giác vuông và tính cạnh, góc của tam giác. Vấn đề 7: Một số hệ thức về cạnh và góc trong tam giác vuông (phần 2) - Tóm tắt lý thuyết, bài tập về toán ứng dụng thực tế và toán tổng hợp. Ôn tập chủ đề 3 - Tóm tắt lý thuyết và bài tập tự luyện để chuẩn bị cho kỳ thi. Hướng dẫn giải - Chi tiết hướng dẫn giải các vấn đề từ 1 đến 7 và ôn tập chủ đề 3. Với tài liệu này, việc học toán hệ thức lượng trong tam giác vuông sẽ trở nên dễ dàng và hiệu quả hơn đối với học sinh lớp 9. Chúc các em học tốt!
Các dạng toán hàm số bậc nhất
Nội dung Các dạng toán hàm số bậc nhất Bản PDF - Nội dung bài viết Các dạng toán hàm số bậc nhấtVấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm sốVấn đề 2: Hàm số bậc nhấtVấn đề 3: Đồ thị của hàm số bậc nhấtVấn đề 4: Vị trí tương đối giữa hai đường thẳngVấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Các dạng toán hàm số bậc nhất Trong tài liệu này, bạn sẽ được hướng dẫn chi tiết với 28 trang về cách phân loại và giải các dạng toán hàm số bậc nhất. Đây là một tài liệu hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 phần Đại số chương 2. Vấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm số Trước hết, tóm tắt lý thuyết để bạn hiểu rõ về khái niệm hàm số và đồ thị hàm số. Sau đó, bài tập và các dạng toán sẽ giúp bạn làm quen với các khái niệm này, bao gồm: Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Bài toán liên quan đến đồ thị hàm số y = ax (a ≠ 0). Sau khi làm xong bài tập, bạn cũng sẽ được giao bài tập về nhà để ôn tập kiến thức. Vấn đề 2: Hàm số bậc nhất Trong phần này, bạn sẽ được học về hàm số bậc nhất thông qua: Dạng 1: Nhận dạng hàm số bậc nhất. Dạng 2: Tìm m để hàm số đồng biến, nghịch biến. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để luyện tập thêm. Vấn đề 3: Đồ thị của hàm số bậc nhất Ở phần này, bạn sẽ tìm hiểu về đồ thị của hàm số y = ax + b (a ≠ 0), bao gồm: Dạng 1: Vẽ đồ thị hàm số y = ax + b và tìm tọa độ giao điểm của hai đường thẳng. Dạng 2: Xét tính đồng quy của ba đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để củng cố kiến thức. Vấn đề 4: Vị trí tương đối giữa hai đường thẳng Trong phần này, bạn sẽ được học về vị trí tương đối của hai đường thẳng, bao gồm: Dạng 1: Chỉ ra các cặp đường thẳng song song và cắt nhau. Dạng 2: Xác định phương trình đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để tự kiểm tra kiến thức đã học. Vấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Trong phần này, bạn sẽ học về hệ số góc của đường thẳng y = ax + b (a ≠ 0), bao gồm: Dạng 1: Xác định hệ số góc của đường thẳng. Dạng 2: Xác định phương trình đường thẳng dựa vào hệ số góc. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để rèn luyện kỹ năng giải bài toán.
Các dạng toán về căn bậc hai và căn bậc ba
Nội dung Các dạng toán về căn bậc hai và căn bậc ba Bản PDF - Nội dung bài viết Các dạng toán về căn bậc hai và căn bậc ba Các dạng toán về căn bậc hai và căn bậc ba Tài liệu này bao gồm 44 trang, được phân loại và cung cấp hướng dẫn giải các dạng toán liên quan đến căn bậc hai và căn bậc ba, giúp học sinh lớp 9 tiện tham khảo trong quá trình học chương trình Toán lớp 9 (tập 1) phần Đại số chương 1. Vấn đề 1: Căn bậc hai A. Tóm tắt lý thuyết: Trong phần này, bạn sẽ được cung cấp kiến thức căn bậc hai, các tính chất cơ bản và cách tính căn bậc hai của một số học. B. Bài tập và các dạng toán: - Dạng 1: Tìm căn bậc hai và căn bậc hai số học của một số. - Dạng 2: So sánh các căn bậc hai số học. C. Bài tập về nhà: Sau khi học và làm các bài tập trong phần này, bạn sẽ được yêu cầu tự làm thêm bài tập về nhà để củng cố kiến thức. Vấn đề 2: Căn thức bậc hai Phần này sẽ giúp bạn hiểu rõ về căn thức bậc hai và cách giải các bài toán liên quan đến căn thức bậc hai.