Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán năm 2022 trường THCS Thanh Xuân Trung Hà Nội

Nội dung Đề thi thử vào môn Toán năm 2022 trường THCS Thanh Xuân Trung Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán năm 2022 trường THCS Thanh Xuân Trung Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2022 trường THCS Thanh Xuân Trung Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi thử tuyển sinh vào lớp 10 THPT môn Toán năm 2022 của trường THCS Thanh Xuân Trung, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2022, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi bao gồm những bài toán thú vị như: Giải bài toán vận tốc: Một người đi xe đạp từ địa điểm A đến địa điểm B, sau đó quay trở lại theo đoạn đường khác. Hãy tính vận tốc lúc đi của người đó. Tính thể tích của quả bóng hình cầu khi biết diện tích bề mặt của nó. Chứng minh các tính chất của tam giác và tứ giác nội tiếp trên đường tròn. Hy vọng rằng đề thi thử này sẽ giúp các em rèn luyện kỹ năng giải bài toán, nắm vững kiến thức và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đăk Lăk gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tính chiều dài và chiều rộng của một hình chữ nhật. Biết rằng nếu tăng cả chiều dài và chiều rộng lên 4cm thì ta được một hình chữ nhật có diện tích tăng thêm 80cm2 so với diện tích của hình chữ nhật ban đầu, còn nếu tăng chiều dài lên 5cm và giảm chiều rộng xuống 2cm thì ta được một hình chữ nhật có diện tích bằng diện tích của hình chữ nhật ban đầu. + Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K [ads] 1) Chứng minh rằng tứ giác OMHQ nội tiếp 2) Chứng minh rằng góc OMH = góc OIP 3) Chứng minh rằng khi điểm M di chuyển trên đường thẳng d thì điểm I luôn cố định 4) Biết OH = R. căn (2), tính IP.IQ
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (vòng 2)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Người ta muốn kẻ số đường chéo của đa giác mà các đường chéo này chia đa giác đã cho thành đúng k miền, mỗi miền là một ngũ giác lồi (hai miền bất kỳ không có điểm trong chung) a. Chứng minh rằng ta có thể thực hiện được với n=2018, k=672 b. Với n=2017, k=672 ta có thể thực hiện được không? Hãy giải thích [ads] + Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức: p(p – 1) = q(q^2 – 1) (*) a) Chứng minh rằng tồn tại số nguyên dương K sao cho: p – 1 = kq; q^2 – 1= kp b) Tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức (*)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID a) Chứng minh rằng góc CBK = góc ABI b) Chứng minh rằng KC vuông góc với KB c) Chứng minh rằng bốn điểm C, K, I, L cùng nằm trên một đường tròn [ads] + Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 … n thành a1, a2, a3 … an mà khi chia các số a1, a1a2, a1a2a3 … a1a2…an cho n ta được các số dư đôi một khác nhau.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Dương
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Dương gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF ,M là điểm di động trên đoạn CE [ads] a. Tính số đo góc BIF b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM=AB thì tứ giác ABHI là tứ giác nội tiếp c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất