Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 năm 2020 2021 môn Toán trường Khánh Hòa Thái Nguyên

Nội dung Đề thi thử vào 10 năm 2020 2021 môn Toán trường Khánh Hòa Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán trường Khánh Hòa Thái Nguyên Đề thi thử vào lớp 10 môn Toán trường Khánh Hòa Thái Nguyên Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Khánh Hòa, tỉnh Thái Nguyên. Đề thi gồm 10 bài toán dạng tự luận, có lời giải chi tiết và thời gian làm bài là 120 phút. Dưới đây là một số câu hỏi đặc biệt trong đề thi: 1. Nhập khẩu chất lỏng I và chất lỏng II với tỉ lệ 4kg:3kg tạo thành hỗn hợp có khối lượng riêng 700 kg/m3. Biết khối lượng riêng của chất lỏng I lớn hơn 200 kg/m3 so với chất lỏng II, hãy tính khối lượng riêng của từng chất lỏng. 2. Xét đường tròn (O) có đường kính AB, CD vuông góc với nhau. Điểm M thuộc đoạn OC (M khác O và C), tia BM cắt đường tròn (O) tại N. Hãy chứng minh AOMN là một tứ giác nội tiếp và rằng ND là tia phân giác của tam giác ANB. 3. Hàm số y = (3m – 2)x – 1 + m (m là tham số). Tìm m sao cho hàm số đồng biến trên R và để đồ thị hàm số cắt hai trục tọa độ Ox, Oy lần lượt tại A, B.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Cần Thơ
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ là bài thi quan trọng để học sinh có cơ hội vào học tập ở trường phổ thông trung học. Đề thi gồm 6 bài toán tự luận có lời giải chi tiết, giúp học sinh ôn tập và kiểm tra kiến thức của mình. Một số bài toán trong đề thi: - Đề thi có bài toán về việc tổ chức thi đấu môn bóng bàn đánh đôi nam nữ trong lớp học. Học sinh cần phải tính toán để tìm ra số học sinh trong lớp 9A. - Bài toán về tam giác ABC và đường tròn (O) cắt các cạnh của tam giác, học sinh cần chứng minh và tính toán các đại lượng liên quan. Với những bài toán phức tạp như vậy, học sinh cần phải có kiến thức vững chắc và khả năng giải quyết vấn đề một cách logic. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng toán học mà còn phản ánh khả năng tư duy logic và khả năng giải quyết vấn đề của học sinh. Chắc chắn rằng việc ôn tập và giải đề thi này sẽ giúp học sinh tự tin hơn trong kỳ thi tuyển sinh và có cơ hội đậu vào trường phổ thông trung học mong muốn.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đăk Lăk
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đăk Lăk Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk bao gồm 5 bài toán tự luận, có lời giải chi tiết. Dưới đây là một số bài toán trong đề: 1. Tính chiều dài và chiều rộng của một hình chữ nhật. Biết rằng nếu tăng cả chiều dài và chiều rộng lên 4cm thì ta được một hình chữ nhật có diện tích tăng thêm 80cm2 so với diện tích của hình chữ nhật ban đầu, còn nếu tăng chiều dài lên 5cm và giảm chiều rộng xuống 2cm thì ta được một hình chữ nhật có diện tích bằng diện tích của hình chữ nhật ban đầu. 2. Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K. Chi tiết phân tích các câu hỏi trong đề: 1) Chứng minh rằng tứ giác OMHQ nội tiếp 2) Chứng minh rằng góc OMH = góc OIP 3) Chứng minh rằng khi điểm M di chuyển trên đường thẳng d thì điểm I luôn cố định 4) Biết OH = R. căn (2), tính IP.IQ Đây là một đề thi đầy thách thức và đòi hỏi sự tư duy logic, khả năng phân tích và giải quyết vấn đề của thí sinh. Mong rằng các em sẽ tự tin và thành công khi tham gia kỳ thi tuyển sinh.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (vòng 2) Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) bao gồm 4 bài toán tự luận. Trong đó: + Bài toán thứ nhất: Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Yêu cầu là kẻ số đường chéo của đa giác sao cho chúng chia đa giác thành đúng k miền, mỗi miền là một ngũ giác lồi (không có điểm chung). Phần a của bài toán yêu cầu chứng minh rằng với n=2018, k=672, ta có thể thực hiện được. Phần b của bài toán đặt câu hỏi liệu với n=2017, k=672 ta có thể thực hiện được không và yêu cầu giải thích. + Bài toán thứ hai: Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức p(p – 1) = q(q^2 – 1). Phần a của bài toán yêu cầu chứng minh rằng tồn tại số nguyên dương K sao cho p – 1 = kq và q^2 – 1 = kp. Phần b của bài toán yêu cầu tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức đề bài. Đề thi này đòi hỏi sự tỉ mỉ, logic và khả năng phân tích của thí sinh để giải quyết các bài toán. Hy vọng sẽ có nhiều thí sinh tài năng đạt kết quả cao khi tham gia bài thi này.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên KHTN Hà Nội (Vòng 1) Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) đưa ra các bài toán tự luận, với lời giải chi tiết để giúp học sinh hiểu rõ vấn đề. Trong đề thi, có một số bài toán như sau: Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID. Hãy chứng minh rằng: a) Góc CBK = góc ABI b) KC vuông góc với KB c) Bốn điểm C, K, I, L cùng nằm trên một đường tròn Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 ... n thành a1, a2, a3 ... an sao cho khi chia các số a1, a1a2, a1a2a3 ... a1a2...an cho n ta được các số dư đôi một khác nhau. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn khuyến khích sự logic, cẩn thận và kiên nhẫn trong quá trình giải quyết vấn đề.