Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Việt Nam Ba Lan Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Việt Nam Ba Lan Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Việt Nam – Ba Lan – Hà Nội mã đề 369 gồm có 6 trang, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi học kì 1 Toán lớp 10 là 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Việt Nam – Ba Lan – Hà Nội : + Một công ty Taxi có 85 xe chở khách gồm 2 loại: xe chở được 4 khách và xe chở được 7 khách. Nếu dùng tất cả số xe đó, tối đa một lần công ty chờ được 445 khách. Số lượng của mỗi loại xe là? A. 50 xe 4 chỗ; 35 xe 7 chỗ. B. 40 xe 4 chỗ; 45 xe 7 chỗ. C. 35 xe 7 chỗ; 50 xe 4 chỗ. D. 45 xe 4 chỗ; 40 xe 7 chỗ. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống, biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Thời gian quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm) là? + Cho hai điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |MA + MB| = |MA – MB| là? A. Đường tròn tâm I, đường kính AB/2. B. Đường trung trực của đoạn thẳng AI. C. Đường trung trực của đoạn thẳng AB. D. Đường tròn đường kính AB.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Cho a >= b. Chứng minh: a3 – b3 >= 3ab(a – b). + Cho tứ giác ABCD. Gọi E; F; I lần lượt là trung điểm AB; CD; EF. a) Chứng minh: AD + BC = 2EF. b) Gọi H; K lần lượt là trung điểm AD; BC. Tính: |IH + IK|. + Cho tam giác ABC có AB = 3, AC = 5, BAC = 120 độ. M thuộc cạnh BC sao cho BM = 2/7BC. a) Tính diện tích S và bán kính đường tròn ngoại tiếp R của tam giác ABC. b) Tính BA.BC và độ dài AM.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Bạn Nhi dùng 60 m lưới B40 rào thành một mảnh vườn hình chữ nhật để trồng hoa tết. Biết rằng một cạnh của vườn là bờ sông nên Nhi chỉ cần rào 3 cạnh còn lại của mảnh vườn hình chữ nhật. Theo em, bạn Nhi nên tính toán các kích thước của mảnh vườn như thế nào để diện tích trồng hoa là lớn nhất? Tính diện tích lớn nhất đó. + Xác định parabol (P): y = ax2 + bx + 2 biết (P) đi qua điểm A(2;4) và (P) nhận đường thẳng x = 5/6 làm trục đối xứng. + Tính diện tích tam giác MNP trong hình vẽ sau (biết G là trọng tâm của tam giác).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Trong mặt phẳng toạ độ Oxy cho ba điểm A(4;2), B(-2;0), C(2;4). Chứng minh tam giác ABC vuông. + Trong mặt phẳng toạ độ Oxy cho ba điểm A(0;1 + √3), B(2;1 + √3) và đường thẳng (d): 3x – y – 2 = 0. Tìm điểm C trên đường thẳng (d) sao cho tam giác ABC là tam giác đều. + Cho phương trình x^2 – 2(1 – m)x – 4m + 4 = 0. Tìm điều kiện của tham số m để phương trình có hai nghiệm x1 và x2 thỏa mãn (x1 – x2)^2 + x1x2 = 16.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Hữu Trang - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Hữu Trang, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Hữu Trang – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho A (0;1), B (5;1), C (2;5). Tìm tọa độ chân đường cao xuất phát từ đỉnh C. + Tìm m để phương trình x^2 – (m + 3)x + m + 2 = 0 có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 = 3×2. + Lập bảng biến thiên và vẽ parabol y = x^2 – 4x – 1.