Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp quy nạp toán học - Nguyễn Hữu Điển

Tài liệu gồm 256 trang được biên soạn bởi tác giả Nguyễn Hữu Điển, hướng dẫn giải toán bằng phương pháp quy nạp toán học, giúp học sinh học tốt chương trình Toán 11 và bồi dưỡng học sinh giỏi môn Toán. Mục lục tài liệu Phương pháp quy nạp toán học – Nguyễn Hữu Điển: Chương 1. Nguyên lý quy nạp toán học. + Chủ đề 1. Suy diễn và quy nạp. + Chủ đề 2. Nguyên lý quy nạp toán học. + Chủ đề 3. Giai đoạn quy nạp và giả thiết quy nạp. + Chủ đề 4. Hai bước của nguyên lý quy nạp toán học. + Chủ đề 5. Khi nào dùng phương pháp quy nạp. Chương 2. Kỹ thuật dùng phương pháp quy nạp toán học. + Chủ đề 1. Một số dạng nguyên lý quy nạp toán học. + Chủ đề 2. Mệnh đề trong nguyên lý quy nạp toán học. + Chủ đề 3. Bước quy nạp được xây dựng trên P(k). + Chủ đề 4. Bước quy nạp được xây dựng trên P(k + 1). + Chủ đề 5. Quy nạp toán học và phép truy hồi. + Chủ đề 6. Quy nạp toán học và tổng quát hoá. Chương 3. Tìm công thức tổng quát. + Chủ đề 1. Cấp số cộng và cấp số nhân. + Chủ đề 2. Tính tổng và số hạng tổng quát. + Chủ đề 3. Phương trình truy hồi tuyến tính. + Chủ đề 4. Tổng của những lũy thừa cùng bậc các số tự nhiên. Chương 4. Số học. + Chủ đề 1. Phép chia hết. + Chủ đề 2. Thuật toán Euclide. + Chủ đề 3. Số phức. + Chủ đề 4. Những ví dụ khác. [ads] Chương 5. Dãy số. + Chủ đề 1. Dãy số tự nhiên. + Chủ đề 2. Dãy trội hơn. + Chủ đề 3. Những bất đẳng thức nổi tiếng. + Chủ đề 4. Dãy đơn điệu. + Chủ đề 5. Số e. + Chủ đề 6. Dãy số Fibonacci. Chương 6. Hình học. Chương 7. Đa thức. + Chủ đề 1. Phân tích đa thức ra thừa số. + Chủ đề 2. Nguyên lý so sánh các hệ số. + Chủ đề 3. Đạo hàm của đa thức. + Chủ đề 4. Đa thức Chebychev. Chương 8. Tổ hợp và đẳng thức. + Chủ đề 1. Một số công thức tổ hợp. + Chủ đề 2. Một số đẳng thức. Chương 9. Liên phân số. + Chủ đề 1. Khái niệm liên phân số. + Chủ đề 2. Phân tích số hữu tỷ thành liên phân số. + Chủ đề 3. Phân số xấp xỉ. + Chủ đề 4. Liên phân số vô hạn.

Nguồn: toanmath.com

Đọc Sách

Phân dạng bài tập về phương pháp quy nạp toán học và dãy số
Tài liệu gồm 14 trang phân dạng và hướng dẫn giải chi tiết các bài toán về phương pháp quy nạp toán học và dãy số. $1 – Phương pháp quy nạp toán học: A – Tóm tắt SGK B – Giải toán C – Bài tập rèn luyện D – Hướng dẫn, đáp số [ads] $2 – Dãy số A – Tóm tắt SGK B – Giải toán + Dạng 1: Xác định các số hạng của dãy số + Dạng 2: Xác định số hạng tông quát (SHTQ) của dãy số cho bởi hệ thức truy hồi + Dạng 3: Chứng minh dãy số tăng, giảm (xét tính đơn điệu) + Dạng 4: Xét tính bị chặn C – Bài tập rèn luyện D – Hướng dẫn, đáp số
Trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp, phân loại và giải chi tiết các câu hỏi và bài tập trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm dãy số, cấp số cộng và cấp số nhân trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Một cấp số cộng có công sai dương là một dãy số dương. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. [ads] + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Một cấp số cộng có công sai dương là một dãy số dương. + (ĐHQG TPHCM – Cơ Sở 2 – năm 2017 – 2018) Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: Hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây,  hàng thứ ba có 3 cây …. Số hàng cây trong khu vườn là?
80 câu trắc nghiệm cấp số cộng, cấp số nhân - Hứa Lâm Phong
Tài liệu gồm 8 trang tuyển chọn 80 câu trắc nghiệm cấp số cộng, cấp số nhân có đáp án do thầy Hứa Lâm Phong biên soạn. Trích một số bài toán trong tài liệu : 1. Cho cấp số cộng có 4 số hạng trong đó tổng của chúng bằng 22, tổng bình phương bằng 166. Bốn số hạng của cấp số cộng là? 2. Tam giác ABC có ba góc A, B, C lập thành một cấp số nhân có công bội bằng 2. Ba góc A, B, C biết A< B< C lần lượt là? 3. Số các số hạng trong một cấp số cộng là chẵn. Tổng các số hạng thứ lẻ và các số hạng thứ chữan lần lượt là 24 và 30. Biết số hạng cuối lớn hơn số hạng đầu là 10,5; số các số hạng là bao nhiêu? Đáp số của bài toán là: A. 20   B. 18 C. 12   D. 8 [ads]
30 câu trắc nghiệm giới hạn của dãy số - Trần Công Diêu
Tài liệu gồm 13 trang với phần tóm tắt lý thuyết và 30 câu trắc nghiệm giới hạn của dãy số có lời giải chi tiết. Trích dẫn tài liệu : + Kết quả nào sau đây đúng? A. Cấp số nhân lùi vô hạn (un) có công bội q thì tổng S = u/(1 – q) B. Cấp số nhân lùi vô hạn (un) có u1 = 4, q = 4/3 thì S = -12 C. Cấp số nhân lùi vô hạn (un) có u1 = 15, S = 60 thì công bội q = 3/4 D. Cấp số nhân lùi vô hạn (un) có u1 = -4, q = -5/4 thì S = -169 [ads] + Cấp số nhân lùi vô hạn (un) có u1 = -50, S = 100. Năm số hạng đầu tiền của cấp số cộng này là? A.50; 25; 12,5; 6,5; 3,25 B.50; 25,5; 12,5; 6,25; 3,125 C.50; 25; 12,5; 6,25; 3,125 D.50; 25; 12,25; 6,125; 3,0625 + Chọn mệnh đề đúng: A. lim cos(2π/n) = 0 B. lim cos(2π/n) = 1 C. lim cos(2π/n) = -1 D. lim cos(2π/n) = 0 không có giới hạn