Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Phong - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Yên Phong, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Phong – Bắc Ninh : + Xác định các số a và b sao cho đa thức x3 + ax + b chia cho đa thức x + 1 có dư là 7, chia cho đa thức x − 3 có dư là -5. Tìm x thỏa mãn (x2 − 4x)2 + 2(x − 2)2 = 43. + Tìm tất cả các số nguyên x, y sao cho (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho số 9n + 11 viết được dưới dạng tích của k số tự nhiên liên tiếp với k ≥ 2. + Cho tam giác ABC sao cho AB < AC. Vẽ ra phía ngoài tam giác ABC các hình vuông ABDE, ACGH. 1. Chứng minh BH = EC. 2. Vẽ hình bình hành AEFH. Chứng minh rằng AF vuông góc với BC. 3. Gọi O là giao điểm của các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của EH và BC, biết OH = OE. Chứng minh tứ giác AMON là hình bình hành và tính góc BOC.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm định HSG Toán 8 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2023. Trích dẫn Đề kiểm định HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho a2(b + c) = b2(c + a) = 2023 với a, b, c đôi một khác nhau và khác không. Tính giá trị của biểu thức P = c2(a + b). + Cho p là số nguyên tố thỏa mãn (p + 1)/2 và (p2 + 1)/2 đều là số chính phương. Chứng minh p2 − 1 chia hết cho 48. + Hình bình hành ABCD có O là giao điểm của hai đường chéo. Kẻ CP vuông góc với đường thẳng AB tại P, CQ vuông góc với đường thẳng AD tại Q. 1. Chứng minh CP.AB = CQ.AD và CPQ đồng dạng với BCA. 2. Gọi M, N lần lượt là trung điểm của OB và OA. Lấy điểm F trên cạnh AB sao cho tia FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. 3. Xác định vị trí điểm F để tổng BE + AK có giá trị nhỏ nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Hải Hòa - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Hải Hòa – Nam Định : + Cho biểu thức. a) Nêu ĐKXĐ và Rút gọn biểu thức A. b) Tính giá trị của biểu thức A biết x thoã mãn: x2 + x = 2. c) Tìm các giá trị x > 0 để biểu thức 6 B A nhận giá trị nguyên. + Cho tam giác ABC nhọn. Các đường cao AE BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM a cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh: NC ND và HI HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. + Cho hai số dương x y thỏa mãn: 2 2 2 4 4 12 9 1 y x xx y. Hãy tìm giá trị nhỏ nhất của biểu thức: Q xy y x 323.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Xác định đa thức P(x), biết P(x) chia cho đa thức x + 1 dư 4, P(x) chia cho đa thức x + 2 dư 6, P(x) chia cho đa thức x2 + 3x + 2 được thương là x + 3 và còn dư. Cho ba số dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức: M = 1/a + 1/4b + 1/16c. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên tia HC lấy điểm M sao cho HM = AH. Vẽ hình bình hành AHMN, MN cắt AC tại E. Vẽ hình bình hành BAED. Chứng minh: a. AB = AE b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. + Cho tam giác ABC có góc ABC = 120°, các đường phân giác BD, AE, CF. a. Chứng minh rằng: 1/BD = 1/BA + 1/BC. b. Tính góc EDF.
Đề học sinh giỏi lần 2 Toán 8 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 8 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho tam giác ABC có ba góc nhọn (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BFC đồng dạng BDA và BFD = ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với HM, đường thẳng này cắt các đường thẳng AB, AD, AC lần lượt tại P, Q, R. Chứng minh: PQ = QR. + Hai địa điểm A và B cách nhau 200 km. Cùng một lúc một xe ô tô khởi hành từ A và một xe máy khởi hành từ B đi ngược chiều nhau. Xe ô tô và xe máy gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau xe máy một giờ thì sẽ gặp nhau tại điểm D cách C một khoảng là bao nhiêu km? Biết rằng vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 20 km/h. + Cho tứ giác ABCD có các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi I là điểm nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết SAMIQ = 32 (cm2), SBMIN = 50 (cm2) và SDPIQ = 20 (cm2).