Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Tây Ninh

Nội dung Đề tham khảo tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề tham khảo tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Tây Ninh Đề tham khảo tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Tây Ninh Để giúp học sinh lớp 9 chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 năm học 2020 – 2021, sở Giáo dục và Đào tạo tỉnh Tây Ninh đã công bố đề tham khảo kỳ thi tuyển sinh vào lớp 10 hệ THPT năm học 2020 – 2021 môn Toán dành cho học sinh theo học chương trình chuẩn (không chuyên Toán). Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Tây Ninh bao gồm 01 trang với 10 bài toán dạng tự luận, mỗi câu tương ứng với 01 điểm, thời gian làm bài thi là 120 phút. Dưới đây là một số câu hỏi từ đề tham khảo này: Cho hình thoi ABCD có AC = a, BD = 3a. Tính độ dài AB theo a. Một mảnh vườn hình chữ nhật có chu vi bằng 28m và độ dài đường chéo bằng 2 lần chiều dài của mảnh vườn đó. Tính diện tích của mảnh vườn đã cho. Tìm a và b để đường thẳng d: y = ax + b cắt đường thẳng d: y = bx – a tại điểm M(2;1). Cho tam giác ABC (AB < AC) và BAC = 60°. Trên cạnh AC lấy điểm D sao cho CD = AB. Gọi M, N lần lượt là trung điểm của AD và BC. Tính CMN. Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AB và AD, BN cắt CM tại P. Tính tỉ số giữa diện tích tam giác BMP và diện tích hình bình hành ABCD. Đề tham khảo này sẽ giúp học sinh ôn tập và nâng cao kiến thức, chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hạ Long - Quảng Ninh
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh dành cho thí sinh thi vào các lớp 10 chuyên Toán; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút; kỳ thi diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh : + Cho x, y là hai số thực thỏa mãn x2 + 5y2 + 4xy + 3x + 4y = 27. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức M = x + 2y. + Từ một điểm A ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC và cát tuyến ADE với đường tròn (B, C là các tiếp điểm, AD < AE, DB < DC). Qua điểm O kẻ đường thẳng vuông góc với DE tại H, đường thẳng này cắt đường thẳng BC tại K. Chứng minh: 1. Tứ giác BCOH nộp tiếp. 2. KD là tiếp tuyến của đường tròn (O). 3. DBC = HBC. + Tìm tất cả các cặp số nguyên dương (a; b) sao cho ab(a + b)/(ab + 2) là số nguyên.
Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Cho Parabal có phương trình: y = 3×2 (P) và đường thẳng có phương trình y = 6x + 2m − 1 (d). Tìm m để parabal (P) cắt đường thẳng (d) tại hai điểm phân biệt. + Cho phương trình: x2 − 6x + 2m + 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x31 + x32 < 72. + Cho (O; R) và điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). I là một điểm thuộc đoạn BC (IB < IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt đường thẳng AB, AC lần lượt E và F. 1. Chứng minh tứ giác OIBE và tứ giác OIF C là các tứ giác nội tiếp. 2. Chứng minh I là trung điểm của EF. 3. Qua O kẻ đường thẳng vuông góc với OA cắt đường thẳng AB, AC lần lượt tại P và Q. Tìm vị trí của A để diện tích tam giác AP Q nhỏ nhất.
Đề thi vào 10 môn Toán (chung) năm 2020 - 2021 trường chuyên Lê Quý Đôn - Lai Châu
Đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Một ô tô khách dự tính đi từ thành phố Lai Châu đến huyện Nậm Nhùn trong một thời gian đã định. Sau khi đi được 1 giờ thì ô tô này dừng lại nghỉ 10 phút. Do đó để đến Nậm Nhùn đúng hạn xe phải tăng tốc thêm 6 km/h. Tính vận tốc ban đầu của ô tô biết rằng quãng đường từ thành phố Lai Châu đi huyện Nậm Nhùn dài 120 km. + Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm tới đường tròn đó (B,C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC. 1. Chứng minh tứ giác ABOC là tứ giác nội tiếp. 2. Chứng minh AH.AO = AD.AE. 3. Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh rằng: IP + KQ ≥ PQ. + Cho a, b là các số không âm thỏa mãn a2 + b2 ≤ 2, hãy tìm giá trị lớn nhất của biểu thức: M = a√3b(a + 2b) + b√3a(b + 2a).
Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hùng Vương - Phú Thọ
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ : + Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Gọi P là điểm nằm trên đường tròn ngoại tiếp tam giác HBC và nằm trong tam giác ABC (P khác B, C, H). Gọi M là giao điểm của đường thẳng PB với đường tròn (O) (M khác B); N là giao điểm của đường thẳng PC với (O) (N khác C). Đường thẳng BM cắt AC tại E, đường thẳng CN cắt AB tại F. Đường tròn ngoại tiếp tam giác AME và đường tròn ngoại tiếp tam giác ANF cắt nhau tại Q (Q khác A). 1. Chứng minh tứ giác AEPF nội tiếp. 2. Chứng minh M, N, Q thẳng hàng. 3. Trong trường hợp AP là phân giác của MAN, chứng minh PQ đi qua trung điểm của đoạn thẳng BC. [ads] + Cho phương trình x2 + mx + n = 0 trong đó m2 + n2 = 2020. Chứng minh nếu phương trình có nghiệm x0 thì |x0| < √2021. + Cho dãy số gồm 4041 số chính phương liên tiếp, trong đó tổng của 2021 số đầu bằng tổng của 2020 số cuối. Tìm số hạng thứ 2021 của dãy số đó.