Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khai thác công thức tính khoảng cách từ chân đường vuông góc của hình chóp đến mặt bên

Tài liệu gồm 14 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên Toán trường THPT Chu Văn An, tỉnh Thanh Hóa), hướng dẫn khai thác công thức tính khoảng cách từ chân đường vuông góc của hình chóp đến mặt bên để giải các bài toán liên quan đến tính khoảng cách trong hình học không gian. Trích dẫn tài liệu khai thác công thức tính khoảng cách từ chân đường vuông góc của hình chóp đến mặt bên: + Sử dụng công thức khoảng cách phía trên giúp chúng ta không phải suy nghĩ dựng hình chiếu của điểm lên mặt phẳng. Khi gặp một bài toán tính khoảng cách mà xuất hiện chân đường vuông góc thì ta sẽ xử lí để đưa về bài toán tính khoảng cách từ chân đường vuông góc đó tới mặt phẳng cần tính. + Trong bài toán chưa có chân đường vuông góc, nên ta cần tìm và chứng minh được rằng chân đường vuông góc đó chính là trọng tâm H của tam giác đáy. Chân đường vuông góc trong bài toán là điểm H, nên ta cần sử dụng tỉ lệ về khoảng cách để chuyển khoảng cách từ B đến (SAC) thành khoảng cách từ H đến (SAC). + Nhận thấy điểm A cùng với A’, B, C tạo thành 1 hình chóp có A là chân đường vuông góc nên ta cần sử dụng tỉ lệ về khoảng cách để chuyển khoảng cách từ M đến (A’BC) thành khoảng cách từ A đến (A’BC).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khối đa diện và thể tích của chúng - Phạm Hoàng Long
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, tóm tắt lý thuyết, công thức cần ghi nhớ và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu chuyên đề khối đa diện và thể tích của chúng – Phạm Hoàng Long: Bài 1 . Khối đa diện. 1. Các định nghĩa. 2. Cách tính thể tích khối đa diện. 3. Nhắc lại kiến thức cũ. 3.1. Hệ thức trong tam giác. 3.2. Diện tích một số hình phẳng. 4. Các dạng bài tập nhận diện khối đa diện. + Dạng 1. Nhận diện các khối đa diện. + Dạng 2. Tính chất đối xứng của hình đa diện. + Dạng 3. Các tính chất khác của đa diện. + Dạng 4. Phân chia, lắp ghép khối đa diện. Bài 2 . Hình chóp. 1. Định nghĩa hình chóp. 2. Công thức. 3. Các dạng toán hình chóp. + Dạng 1. Khối chóp có một cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có một mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. 3.1. Khối chóp tứ giác đều. 3.2. Khối chóp tam giác đều. 3.3. Các khối chóp đa giác đều khác. + Dạng 4. Khối tứ diện. + Dạng 5. Khối chóp khác. + Dạng 6. Tỉ lệ thể tích trong hình chóp. [ads] Bài 3 . Hình lăng trụ. 1. Định nghĩa hình lăng trụ. 2. Các dạng toán hình lăng trụ. + Dạng 1. Hình lập phương. + Dạng 2. Hình hộp chữ nhật. + Dạng 3. Lăng trụ đứng đáy tứ giác. 3.1. Đáy hình vuông. 3.2. Đáy hình bình hành – hình thoi. + Dạng 4. Lăng trụ đứng đáy tam giác. 4.1. Đáy tam giác thường. 4.2. Đáy tam giác vuông cân. 4.3. Đáy tam giác vuông. 4.4. Đáy tam giác đều. 4.5. Đáy tam giác cân. + Dạng 5. Hình hộp. + Dạng 6. Khối lăng trụ xiên. + Dạng 7. Tỉ lệ khối lăng trụ. Bài 4 . Ứng dụng và max – min (GTLN – GTNN).
Thể tích khối đa diện phức hợp (VDC) - Đặng Việt Đông
Tài liệu gồm 52 trang, được tổng hợp bởi thầy Đặng Việt Đông, hướng dẫn giải bài toán thể tích khối đa diện phức hợp, đây là một lớp bài toán vận dụng cao (VDC) thường gặp trong đề thi thử tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Thể tích khối đa diện: Thể tích khối chóp, Thể tích khối lăng trụ, Thể tích khối lập phương, Thể tích khối hộp chữ nhật. 2. Thể tích khối đa diện được phân chia: Khối chóp tam giác, Khối chóp tứ giác có đáy là hình hành, Thể tích khối lăng trụ tam giác, Khối hộp. [ads] II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ + Khối đa diện cắt ra từ một khối chóp. + Khối chóp cụt. + Khối hình hộp khác. + Khối lăng trụ khác. + Khối da diện cắt ra từ khối lăng trụ.
Tổng ôn tập TN THPT 2020 môn Toán Thể tích khối đa diện
Tài liệu gồm 50 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Thể tích khối đa diện: 1. Công thức tính thể tích khối chóp. 2. Công thức tính thể tích khối lăng trụ. + Công thức tính thể tích khối lập phương. + Công thức tính thể tích khối hộp chữ nhật. 3. Xác định diện tích đáy. 4. Xác định chiều cao. + Hình chóp có một mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. + Hình chóp có hai mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. + Hình chóp có các cạnh bên bằng nhau: Chân đường cao của hình chóp là tâm đường tròn ngoại tiếp đa giác đáy.
Tổng ôn tập TN THPT 2020 môn Toán Góc và khoảng cách trong không gian
Tài liệu gồm 47 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề góc và khoảng cách trong không gian, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Góc và khoảng cách trong không gian: CHỦ ĐỀ 1 . GÓC TRONG KHÔNG GIAN. Bài toán 1. Góc giữa đường thẳng a và đường thẳng b. + Phương pháp 1. Sử dụng song song. + Phương pháp 2. Sử dụng tích vô hướng. + Phương pháp 3. Ghép vào hệ trục tọa độ Oxyz. Bài toán 2. Góc giữa đường thẳng AB và mặt phẳng (P). + Phương pháp 1. Sử dụng kiến thức Hình học 11. + Phương pháp 2. Ghép vào hệ trục tọa độ Oxyz. [ads] Bài toán 3. Góc giữa mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 1. Dựa vào định nghĩa. + Phương pháp 2. Tìm hai đường thẳng d1 và d2 lần lượt vuông góc với mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 3. Sử dụng công thức hình chiếu. + Phương pháp 4. Sử dụng công thức sin a. + Phương pháp 5. Ghép vào hệ trục tọa độ Oxyz. CHỦ ĐỀ 2 . KHOẢNG CÁCH TRONG KHÔNG GIAN. Bài toán 1. Tính khoảng cách từ chân đường cao của hình chóp đến mặt bên của hình chóp. Bài toán 2. Tính khoảng cách giữa cạnh bên và cạnh thuộc mặt đáy.