Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 1 Toán 10 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 1 môn Toán 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 TẬP HỢP. MỆNH ĐỀ Mệnh đề. – Nhận biết: + Phát biểu được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. – Thông hiểu: + Thiết lập được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. + Xác định được tính đúng/sai của một mệnh đề toán học trong những trường hợp đơn giản. Tập hợp và các phép toán trên tập hợp. – Nhận biết: + Nhận biết được các khái niệm cơ bản về tập hợp (tập con, hai tập hợp bằng nhau, tập rỗng) và biết sử dụng các kí hiệu. – Thông hiểu: + Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể. – Vận dụng: + Giải quyết được một số vấn đề thực tiễn gắn với phép toán trên tập hợp (ví dụ: những bài toán liên quan đến đếm số phần tử của hợp các tập hợp). 2 BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. Hệ bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được hệ bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Vận dụng: + Vận dụng được kiến thức về hệ bất phương trình bậc nhất hai ẩn vào giải quyết bài toán thực tiễn, bài toán tìm cực trị của biểu thức F = ax + by trên một miền đa giác. – Vận dụng cao: + Vận dụng được kiến thức về bất phương trình, hệ bất phương trình bậc nhất hai ẩn vào giải quyết một số bài toán thực tiễn (phức hợp, không quen thuộc). 3 HỆ THỨC LƯỢNG TRONG TAM GIÁC Giá trị lượng giác của một góc từ 0° đến 180°. – Nhận biết: + Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°. + Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau, các hệ thức lượng giác cơ bản. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. Hệ thức lượng trong tam giác. – Nhận biết: + Nhận biết các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác. – Thông hiểu: + Sử dụng được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin và công thức tính diện tích tam giác để tính các cạnh, các góc chưa biết và diện tích tam giác, độ dài đường cao, đường trung tuyến, bán kính đường tròn nội, ngoại tiếp tam giác. – Vận dụng: + Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định chiều cao của vật khi không thể đo trực tiếp) hoặc các bài toán khác về hệ thức lượng trong tam giác. 4 VECTƠ Các khái niệm mở đầu. – Nhận biết: + Nhận biết được khái niệm vectơ, hai vectơ cùng phương, hai vectơ cùng hướng, hai vectơ bằng nhau, vectơ-không. – Thông hiểu: + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. + Tính được độ dài vectơ. Tổng và hiệu của hai vectơ. – Nhận biết: + Nhận biết được quy tắc ba điểm, quy tắc hình bình hành, quy tắc về hiệu vectơ, quy tắc trung điểm và trọng tâm tam giác. – Thông hiểu: + Thực hiện được các phép toán tổng và hiệu hai vectơ. + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. – Vận dụng: + Vận dụng vectơ trong các bài toán tổng hợp lực, tổng hợp vận tốc. Tích của một vectơ với một số. – Nhận biết: + Nhận biết định nghĩa tích của vectơ với một số, các tính chất. + Biết được điều kiện để hai vectơ cùng phương, tính chất trung điểm, tính chất trọng tâm. – Thông hiểu: + Thực hiện được phép nhân vectơ với một số. + Mô tả các mối quan hệ cùng phương, cùng hướng bằng vectơ. Vectơ trong mặt phẳng tọa độ. – Nhận biết: + Nhận biết được vectơ theo hai vectơ đơn vị, tìm được tọa độ vectơ khi biết tọa độ hai điểm, tìm độ dài vectơ khi biết tọa độ. – Thông hiểu: + Tính được tọa độ điểm, vectơ thỏa mãn đẳng thức, tọa độ của vectơ tổng, tọa độ trung điểm, trọng tâm, tọa độ đỉnh hình bình hành, vectơ cùng phương, độ dài vectơ. – Vận dụng: + Vận dụng kiến thức tọa độ của điểm, của vectơ để giải các bài toán tìm tọa độ của điểm, của vectơ hoặc các bài toán khác có vận dụng thực tiễn. Tích vô hướng của hai vectơ. – Nhận biết: + Nhận biết được tích vô hướng hai vectơ, biểu thức tọa độ tích vô hướng, góc giữa hai vectơ. – Thông hiểu: + Tính được tích vô hướng hai vectơ, góc giữa hai vectơ, biểu thức tọa độ tích vô hướng, tìm tọa độ điểm, vectơ liên quan đến độ dài vectơ, tích vô hướng. – Vận dụng: + Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động). + Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật). 5 CÁC SỐ ĐẶC TRƯNG CỦA MẪU SỐ LIỆU KHÔNG GHÉP NHÓM Số gần đúng, sai số. – Nhận biết: + Hiểu được khái niệm số gần đúng, sai số tuyệt đối. – Thông hiểu: + Xác định được số gần đúng của một số với độ chính xác cho trước. + Xác định được sai số tương đối của số gần đúng. – Vận dụng: + Xác định được số quy tròn của số gần đúng với độ chính xác cho trước. + Biết sử dụng máy tính cầm tay để tính toán với các số gần đúng. Các số đặc trưng đo xu thế trung tâm. – Nhận biết: + Nắm các khái niệm về số trung bình, số trung vị, tứ phân vị, mốt và ý nghĩa. – Thông hiểu: + Biết tìm số trung bình và mốt dựa vào bảng số liệu. – Vận dụng: + Tính được số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm: số trung bình cộng (hay số trung bình), trung vị (median), tứ phân vị (quartiles), mốt (mode). – Vận dụng cao: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. Các số đặc trưng đo mức độ phân tán. – Nhận biết: + Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học trong Chương trình lớp 10 và trong thực tiễn. – Thông hiểu: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. – Vận dụng: + Tính được số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm: khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn. – Vận dụng cao: + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ lớp 10 môn Toán lần 1 năm 2018 2019 sở GD và ĐT Bắc Ninh
Nội dung Đề kiểm tra định kỳ lớp 10 môn Toán lần 1 năm 2018 2019 sở GD và ĐT Bắc Ninh Bản PDF Đề kiểm tra định kỳ Toán lớp 10 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề), đề nhằm đánh giá tổng quát lại các nội dung kiến thức Toán lớp 10 mà học sinh đã học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra định kỳ Toán lớp 10 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh : + Giả sử phương trình 2x^2 – 4mx – 1 = 0 (với m là tham số) có hai nghiệm x1, x2. Tính T = x1^2 + x2^2 + x1 + x2 theo m. + Cho tam giác ABC. Gọi D là điểm trên cạnh BC sao cho DB = 2DC, I là trung điểm của AD, điểm M trên cạnh AC sao cho MA = xMC. Tìm x để 3 điểm M, B, I thẳng hàng. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0;-1), B(2;3), G(1;2). a. Tìm tọa độ AB và trung điểm I của BG. b. Tìm tọa độ điểm C sao cho tam giác ABC nhận G làm trọng tâm. c. Tìm tọa độ điểm N thỏa mãn AN = 2NB.
Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường Phước Vĩnh Bình Dương
Nội dung Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường Phước Vĩnh Bình Dương Bản PDF Đề kiểm tra học kỳ 1 Toán lớp 10 năm 2018 – 2019 trường Phước Vĩnh – Bình Dương mã đề 392 gồm 25 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, học sinh làm bài trong 90 phút, đề nhằm giúp giáo viên bộ môn và nhà trường đánh giá toàn diện lại các kiến thức Toán lớp 10 mà học sinh đã được học trong thời gian qua. Trích dẫn đề kiểm tra học kỳ 1 Toán lớp 10 năm 2018 – 2019 trường Phước Vĩnh – Bình Dương : + Trong hệ trục tọa độ Oxy, cho tam giác ABC với A(-2;1), B(4;1), C(-2;5). a/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b/ Chứng minh AB vuông góc AC. Tính diện tích tam giác ABC. [ads] + Câu nào sau đây không là mệnh đề? A. Tam giác đều là tam giác có ba cạnh bằng nhau. B. 3 < 1. C. Bạn học giỏi quá!. D. 4 – 5 = 1. + Trong hệ trục tọa độ Oxy. Cho tam giác ABC có A(3;5), B(1;2), C(5;2). Trọng tâm của tam giác ABC là? File WORD (dành cho quý thầy, cô):
Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường chuyên Ngoại Ngữ Hà Nội
Nội dung Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường chuyên Ngoại Ngữ Hà Nội Bản PDF
Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường THPT Phan Đình Phùng Hà Nội
Nội dung Đề kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường THPT Phan Đình Phùng Hà Nội Bản PDF Đề kiểm tra học kỳ 1 Toán lớp 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội mã đề 864 gồm 3 trang với 15 câu hỏi trắc nghiệm khách quan (chiếm 3 điểm) và 4 bài toán tự luận (chiếm 7 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán lớp 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Với mọi số nguyên n, nếu n là số lẻ thì n^2 +1 cũng là số lẻ. B. Với mọi số nguyên n, nếu n là số lẻ thì n^2 cũng là số lẻ. C. Với mọi số nguyên n, nếu n là số lẻ thì 3n – 1 cũng là số lẻ. D. Với mọi số nguyên n, nếu n là số lẻ thì 3n + 1 cũng là số lẻ. [ads] + Cho hàm số y = f(x) có tập xác định là [-3;3] và có đồ thị được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-3;-1) và (1;3). B. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-2;1) và (1;3). C. Hàm số y = f(x) + 2018 nghịch biến trên các khoảng (-2;-1) và (0;1). D. Hàm số y = f(x) + 2018 nghịch biến trên khoảng (-3;-2). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(2;3), B(3;4) và C(3;-1). a/ Chứng minh A, B, C là 3 đỉnh của 1 tam giác. b/ Xác định tọa độ trực tâm H của tam giác ABC. c/ Tìm tọa độ điểm M trên đường phân giác của góc phần tư thứ nhất sao cho biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất.