Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0)

Nội dung Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0)A. Các kiến thức cần nhớB. Bài tập áp dụng Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0) Trong tài liệu này, bạn sẽ được giới thiệu đến kiến thức cơ bản về hàm số và đồ thị hàm số y = ax^2 (a khác 0) trong chương trình môn Toán lớp 9. Tài liệu bao gồm 20 trang, bao gồm các kiến thức cần nhớ, các dạng toán và bài tập thực hành có đáp án và lời giải chi tiết. Để hiểu rõ hơn về chủ đề này, hãy cùng điểm qua một số điểm chính sau: A. Các kiến thức cần nhớ Tính chất của hàm số y = ax^2 (a khác 0): Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Đồ thị của hàm số y = ax^2 (a khác 0): Đồ thị của hàm số y = ax^2 (a khác 0) là một parabol với đỉnh tại gốc tọa độ O. Vị trí của đồ thị so với trục hoành phụ thuộc vào giá trị của a. B. Bài tập áp dụng Tài liệu cung cấp nhiều bài tập áp dụng để bạn thực hành và mở rộng kiến thức: Tính giá trị của hàm số tại một điểm cho trước. Xét tính đồng biến, nghịch biến của hàm số. Vẽ đồ thị hàm số y = ax^2 (a khác 0). Giải bài toán liên quan đến sự tương giao giữa đồ thị và đường thẳng. Ngoài ra, tài liệu còn kèm theo một bộ bài tập về nhà để bạn tự rèn luyện và nắm vững kiến thức. Hãy cẩn thận và kiên nhẫn khi làm bài tập, sẽ không có gì là khó khăn nếu bạn cố gắng. Chúc bạn học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai
Tài liệu gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 6 – 7. A. KIẾN THỨC TRỌNG TÂM 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. 5. Rút gọn biểu thức có chứa căn bậc hai. B. CÁC DẠNG TOÁN MINH HỌA I. DẠNG BÀI MINH HỌA + Dạng toán 1. Biến đổi đơn giản biểu thức chứa căn thức bậc hai các dạng cơ bản. + Dạng toán 2. Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ III. BÀI TẬP TỰ LUYỆN
Chuyên đề liên hệ giữa phép nhân - phép chia và phép khai phương
Tài liệu gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề liên hệ giữa phép nhân và phép khai phương, liên hệ giữa phép chia và phép khai phương, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN + Dạng toán 1. Thực hiện phép tính. + Dạng toán 2. Rút gọn biểu thức và tính giá trị biểu thức. + Dạng toán 3. Giải phương trình. + Dạng toán 4. Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN PHẢN XẠ CÁC DẠNG
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 18 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề nhắc lại và bổ sung các khái niệm về hàm số, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ 1. Khái niệm hàm số. Nếu đại lượng y phụ thuộc vào đại lượng x thay đổi sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x (x gọi là biến số). 2. Giá trị của hàm số, điều kiện xác định của hàm số. Giá trị của hàm số f(x) tại điểm x0 kí hiệu là y0 = f(x0). Điều kiện xác định của hàm số y = f(x) là tất cả các giá trị của x sao cho biểu thức f(x) có nghĩa. 3. Đồ thị của hàm số. Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm M(x;y) trong mặt phẳng tọa độ Oxy sao cho x, y thỏa mãn hệ thức y = f(x). 4. Hàm số đồng biến và hàm số nghịch biến. Cho hàm số y = f(x) xác định với mọi giá trị x thuộc R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R. B. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. Dạng 3. Xét sự đồng biến và nghịch biến của hàm số. Dạng 4. Nâng cao và phát triển tư duy. C. TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề căn bậc hai, căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề căn bậc hai, căn thức bậc hai và hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 1 – 2. A. KIẾN THỨC TRỌNG TÂM I. Căn bậc hai số học. II. Căn thức bậc hai. B. BÀI TẬP MINH HỌA I. BÀI TẬP VÀ CÁC DẠNG BÀI TỰ LUẬN. Dạng toán 1. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng toán 2. Tính giá trị biểu thức chứa căn bậc hai. Dạng toán 3. Rút gọn biểu thức chứa căn bậc hai. Dạng toán 4. Giải phương trình chứa căn bậc hai. Dạng toán 5. Bài toán nâng cao. II. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ. III. TỰ LUYỆN. Dạng toán 1. Tính giá trị của biểu thức chứa căn bậc hai. Dạng toán 2. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng toán 3. Rút gọn biểu thức chứa căn bậc hai. Dạng toán 4. So sánh hai biểu thức chứa căn bậc hai. Dạng toán 5. Phân tích đa thức thành nhân tử. Dạng toán 6. Giải phương trình chứa căn bậc hai.