Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và phân dạng môn Toán 9 - Nguyễn Ngọc Dũng

Tài liệu gồm 88 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tổng hợp lý thuyết và phân dạng môn Toán 9. MỤC LỤC : I Đại số 1. Chương 1. Căn bậc hai. Căn bậc ba 2. Bài số 1. Căn bậc hai 2. Bài số 2. Liên hệ giữa phép nhân, phép chia và phép khai phương 5. Bài số 3. Biến đổi, rút gọn biểu thức chứa căn bậc hai 5. Bài số 4. Căn bậc ba 8. Bài số 5. Ôn tập chương 1 9. Chương 2. Hàm số. Hàm số bậc nhất 15. Bài số 1. Hàm số, hàm số bậc nhất 15. Bài số 2. Đường thẳng song song – Đường thẳng cắt nhau 16. Bài số 3. Hệ số góc của đường thẳng y = ax + b (a khác 0) 18. Bài số 4. Các bài tập tổng hợp 20. Bài số 5. Các bài toán thực tế ứng dụng hàm số 21. Chương 3. Hệ phương trình bậc nhất hai ẩn 24. Bài số 1. Phương trình và hệ phương trình bậc nhất hai ẩn 24. Bài số 2. Giải hệ phương trình bậc nhất hai ẩn 25. Bài số 3. Giải bài toán bằng cách lập hệ phương trình 28. Chương 4. Hàm số y = ax2 (a khác 0). Phương trình bậc hai 29. Bài số 1. Hàm số y = ax2 (a khác 0) 29. Bài số 2. Phương trình bậc hai một ẩn 34. Bài số 3. Hệ thức Vi-ét và ứng dụng 40. Bài số 4. Phương trình quy về phương trình bậc hai 45. Bài số 5. Giải bài toán bằng cách lập phương trình 48. II Hình học 52. Chương 1. Hệ thức lượng trong tam giác vuông 53. Bài số 1. Hệ thức lượng trong tam giác vuông 53. Bài số 2. Tỉ số lượng giác trong tam giác vuông 54. Bài số 3. Ứng dụng thực tế 56. Chương 2. Đường tròn 61. Bài số 1. Sự xác định đường tròn 61. Bài số 2. Đường kính và dây của đường tròn 61. Bài số 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 61. Bài số 4. Vị trí tương đối giữa đường thẳng và đường tròn. Dấu hiệu nhận biết tiếp tuyến 62. Chương 3. Góc với đường tròn 65. Bài số 1. Góc ở tâm – Góc nội tiếp – Góc tạo bởi tiếp tuyến và dây cung 65. Bài số 2. Góc có đỉnh bên trong – bên ngoài đường tròn 67. Bài số 3. Tứ giác nội tiếp 68. Bài số 4. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt 72. Chương 4. Hình trụ – Hình nón – Hình cầu 77. Bài số 1. Diện tích xung quanh và thể tích của hình trụ 77. Bài số 2. Diện tích xung quanh và thể tích của hình nón và hình nón cụt 80. Bài số 3. Diện tích và thể tích của hình cầu 83.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa: Một đường thẳng được gọi là một tiếp tuyến của đường tròn nếu nó chỉ có 1 điểm chung với đường tròn đó. 2. Các định lí: a) Định lí 1: Nếu một đường thẳng a là tiếp tuyến của một đường tròn (O;R) thì nó vuông góc với tiếp tuyến đi qua tiếp điểm. b) Định lí 2: Nếu một đường thẳng a đi qua một điểm của đường tròn (O;R) và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là tiếp tuyến của đường tròn. 3. Các dấu hiệu nhận biết tiếp tuyến của đường tròn. a) Nếu một đường thẳng đi qua 1 điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. b) Nếu khoảng cách từ tâm đường tròn đến đường thẳng bằng bán kính của đường tròn thì đường thẳng đó là tiếp tuyến của đường tròn. c) Nếu một đường thẳng và một đường tròn chỉ có một điểm chung thì đường thẳng đó là tiếp tuyến của đường tròn. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Cách giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: Cách 1: Chứng minh C nằm trên (O) và OC vuông góc với a tại C. Cách 2: Kẻ OH vuông góc với a tại H và chứng minh OH = OC = R. Cách 3: Vẽ tiếp tuyến a’ của (O) và chứng minh a trùng với a’. Dạng 2 : Tính độ dài đoạn thẳng. Cách giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tính chất hai tiếp tuyến cắt nhau
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tính chất hai tiếp tuyến cắt nhau trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của hai tiếp tuyến cắt nhau. Định lí: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: – Điểm đó cách đều hai tiếp điểm. – Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến. – Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm. – Đường thẳng đi qua điểm đó và qua tâm đường tròn là đường trung trực của đoạn thẳng nối hai tiếp điểm. 2. Đường tròn nội tiếp tam giác. – Đường tròn tiếp xúc với ba cạnh của một tam giác gọi là đường tròn nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn. – Tâm của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác của các góc trong tam giác. 3. Đường tròn bàng tiếp tam giác. – Đường tròn tiếp xúc với 1 cạnh của tam giác và tiếp xúc với phần kéo dài của hai cạnh còn lại gọi là đường tròn bàng tiếp tam giác. – Tâm của đường tròn bàng tiếp tam giác góc A là giao điểm của hai đường phân giác các góc ngoài tại B và C hoặc là giao điểm của đường phân giác góc A và đường phân giác ngoài tại B (hoặc C). – Mỗi tam giác có ba đường tròn bàng tiếp tam giác. B. Bài tập và các dạng toán. Dạng 1 : Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Cách giải: Dùng tính chất của hai tiếp tuyến cắt nhau. Dạng 2 : Chứng minh tiếp tuyến, tính độ dài, tính số đo góc. Cách giải: Ta sử dụng các kiến thức sau: – Tính chất của hai tiếp tuyến cắt nhau. – Khái niệm đường tròn nội tiếp, bàng tiếp. – Hệ thức lượng về cạnh và góc trong tam giác vuông. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề vị trí tương đối của hai đường tròn
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối của hai đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của đường nối tâm. – Đường nối tâm (Đường thẳng đi qua tâm 2 đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: – Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. – Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R r. 3. Tiếp tuyến chung của hai đường tròn. Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó. a) Hai đường tròn cắt nhau có hai tiếp tuyến chung ngoài. b) Hai đường tròn tiếp xúc ngoài có hai tiếp tuyến chung ngoài và một tiếp tuyến chung (hình vẽ b). c) Hai đường tròn tiếp xúc trong chỉ có một tiếp tuyến chung (hình c). d) Hai đường tròn ngoài nhau có hai tiếp tuyến chung ngoài và hai tiếp tuyến chung trong (hình vẽ d). e) Hai đường tròn chứa nhau không có tiếp tuyến chung. f) Hai đường tròn đồng tâm không có tiếp tuyến chung. B. Bài tập và các dạng toán. Dạng 1 : Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn tiếp xúc nhau ABH ANH. Dạng 2 : Các bài toán liên quan đến hai đường tròn cắt nhau. Cách giải : Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Các bài toán về hai đường tròn không cắt nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không giao nhau. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)
Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.